المرحلة : الرابعة
المادة : الاحصاء الرياضي

جامعة تكريت
كلية النربية للبنات
قسم الرياضيات

Testing of Hypothesis

م. اسماءصالحقدوريـ
asmaa.salih@tu.edu.iq

Testing of Hypothesis

There are two major areas of Statistical inference, The estimation of parameter and the Testing of Hypothesis. In the estimation problem, we try to determine the value of some unknown parameter θ from experimental observations. In testing of Hypothesis we have some preconceived idea of what values the parameters should be, and the purpose of conducting an experiment is then either to confirm our believe about the parameter θ or reject the hypothesis value of θ.

General Concepts and Definition:
Def: A Hypothesis
Is statement of claim about the stat of nature.
Def : A Statistical Hypothesis
Is an assertion about the stat of nature that is described by a defined probability model.

We shall denote a statistical hypothesis by capital H followed (:), followed by the assertion that specifies the hypothesis.

Def : A Simple Hypothesis
Is a statement that completely specifies the probability law for random variable.

Ex:
1- $\mathrm{H}: \mu=1500$
2- $H: \sigma^{2}=20$

3- $H: P=\frac{1}{2}$
Def : A Composite Hypothesis
Is a Hypothesis that is not simple.
Ex:
$1-\mathrm{x} \sim N\left(\mu, \sigma^{2}\right) ; H: \mu \leq 17$
$2-\mathrm{x} \sim B(n, p), H: P \neq \frac{\mathbf{1}}{\mathbf{4}}$
Example: the statement that:
a -X is the Normal with $\mu=60$ and variance $=25$, is simple hypothesis.
$\mathrm{b}-\mathrm{X}$ is the Normal, is a Composite hypothesis.
$\mathrm{c}-\mathrm{X}$ is exponential, with $\theta=0.02$, is a simple hypothesis.
d- $H_{0}: \theta=75$, is a simple hypothesis.
e- $\quad H_{0} \quad: \theta<75$, is composite hypothesis
f-In General a Hypothesis H: $\theta \in w$
is called simple hypothesis if w consist of single point, while if w has more than one element, H is composite.

Def: A test of Hypothesis
Is a rule which when the experimental sample value have obtained, leads of decision to accept or to reject the hypothesis under consideration.

Remark:-

To distinguish between the two hypothesis considered, we will call one of them the Null hypothesis denoted by H_{0}, and the other the Alternative hypothesis denoted by H_{1}.

To test H_{0} versus $\quad H_{1}$, the rule must for any possible observed sample values, tell us which of the two hypothesis to accept.

Thus (accept H_{0}) is equivalent to (reject H_{1}) and vice versa (often the Null hypothesis is a hypothesis of no difference).

Let the score of a test in statistic be Normally distribution with

$$
H_{0}: \theta \leq \theta_{0}
$$

against the Alternative hypothesis

$$
H_{1}: \theta>\theta_{0}
$$

are composite hypothesis while $\quad H_{0}: \theta=\theta_{0}$ Is called simple Null hypothesis.

- Types of error and size of error

Def. In testing hypothesis, we could make two different possible errors:
i- Rejection of $\quad H_{0}$ when H_{0} is true is called type I error. ii- Acceptance of H_{0} when $\quad H_{0}$ is false , is called type ॥ error.

		H_{0} is true	H_{0} is false
Accept	H_{0}	No error	type II error
Reject	H_{0}	type I error	No error

iii- $\alpha=$ The size of a type 1 error is defined to be the probability that a type l error is made

$$
\text { pr.[rej. } H_{0} \text { when } \quad H_{0} \text { is true] }=\text { pr.[rej. } H_{0} \mid \quad H_{0}
$$ is true]

the significance level of the test of statistical hypothesis H_{0}
iv- $\beta=$ the size of a type II error is defined to be the probability that a type Il error is made.
pr.[Acc. H_{0} when H_{0} is false] $=$ pr.[Acc. $H_{0} \mid H_{0}$ is false] $=$ [Accept $\quad H_{0} \mid \quad H_{1}$ is true]

The level of significance α is determined before the test, and in practical applications we usually choose α equal to ($\alpha=$ $0.01, \alpha=0.05, \alpha=0.10$) .

The smaller the value of α, it means a reduction in the Critical region, its means an increase in the acceptance region.

Def. Power of the test

Probability rejection H_{0} when H_{0} is false it's called Power of test and denoted by p.ot.as
p.o.t. $=$ pr.[reject H_{0} when H_{0} is false]
= 1- pr.[accept H_{0} when H_{0} is false]
$=1-\beta$

