

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : الخواص التبولوجية والوراثية في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq

Proposition (45)

Suppose that (M, τ) and (N, σ) are homeomorphic spaces, if (M, τ) is T_2 _space, then (N, σ) is T_2 _space.

Proof.

Let $f: (M, \tau) \to (N, \sigma)$ be *Home* and if $u \neq v \in M$, then $f(u), f(v) \in N$ and $f(u) \neq f(v)$. Since $((M, \tau)$ is T_{2} -space, we get $\exists H, D$ are two disjoint open sets of (M, τ) such that $f(u) \in H, f(v) \in D$. But, $u \in f^{-1}(H), v \in f^{-1}(D)$ and $f^{-1}(H) \cap f^{-1}(D) = f^{-1}(H \cap D) = f^{-1}(\emptyset) =$ \emptyset . Hence (N, σ) is T_{2} -space.

Theorem (46)

Every compact and T_2 _space is regular.

Proof.

Let (M, τ) be compact T_2 _space, let $x \in M$ and F be subset of $M, \ni x \notin F$. Since (M, τ) is N_P _compact. we get F is compact. There four $\exists H, D$ are two *open* sets $\exists x \in H$ and $F \subseteq D$, $H \cap D = \emptyset$. Then (M, τ) is regular.

Definition (47)

The (M, τ) is T_3 _space if M is regular and T_1 _space.

Corollary (48)

Every compact and T_2 _space is T_3 _space.

Proof.

Since T_2 _space is T_1 _space, by theorem (46). Every compact and T_2 _space is

regular. We have (M, τ) is T_3 _space.

Proposition (49)

Every T_3 _space is T_2 _space.

Proof.

Let (M, τ) be T_3 _space (regular and T_1 _space) and $x, y \in M, x \neq y$.

Since (M, τ) is T_1 -space, then $\{x\}, \{y\}$ is closed sets such that $x \notin \{y\}$.

Since (M, τ) is regular, then $\exists H, D \in \tau, H \cap D = \emptyset, (x \in H \land \{y\} \subseteq D) \rightarrow x \in H$

∧ $y \in D$. Then (M, τ) is T_2 _space.

Theorem (50)

A compact and T_2 _space is normal.

Proof.

Suppose that (M, τ) is compact T_2 _space and if, $H, D \subseteq M$ are disjoint closed sets, became H, D are compact sets in M.

Let $x \in H$ be arbitrary and $H \cap D = \emptyset$, then $x \notin D$. By T_2 _space, \exists disjoint open sets $Z_x, I \in \tau \ni x \in Z_x, D \subseteq \tau$.

The family $\{Z_x : x \in H\}$, so $\{Z_{x_i} : i = 1, 2, ..., n\}$. Then $H \subseteq \bigcup_{i=1}^n Z_{x_i}$, we get $H \subseteq Z \to \bigcup_{i=1}^n Z_{x_i} = Z$. Furthermore, $D \subseteq I_i$ for $1 \le i \le n$, then $D \subseteq \bigcap_{i=1}^n I_i$, we get $D \subseteq I \to \bigcap_{i=1}^n I_i = I$. Since $I_i \bigcap_{1=1}^n Z_{x_r} = \emptyset$ for $1 \le i \le n$, $Z_{x_r} \bigcap_{1=1}^n I = Z_{x_r} \cap (\bigcap_{i=1}^n I_i) = \emptyset$ for $1 \le r \le n$, $I \cap Z = I \cap (\bigcup_{i=1}^n Z_{x_i}) = \emptyset$ So, $H \subseteq Z, D \subseteq I$. Then (M, τ) is normal.

Definition (51)

The (M, τ) is T_4 _space if (M, τ) is normal and T_1 _space.

Corollary (52)

Every compact and T_2 _space is T_4 _space.

Proof.

Since T_2 -space is T_1 -space, by theorem above Every compact and T_2 -space is normal. We have (M, τ) is T_4 -space.

Theorem (53)

Every T_4 _space is T_3 _space.

Proof.

If (M, τ) is T_4 _space $(N_P$ _normal and T_1 _space) and let $x \neq y \in M$.

Since (M,τ) is T_1 -space $\rightarrow \{x\}$ and $\{y\}$ is closed sets $\rightarrow x \notin \{y\}, y \notin \{x\}$ and (M,τ) is normal $\rightarrow \exists H, D \in \tau, H \cap D = \emptyset, (\{x\} \subseteq H \land \{y\} \subseteq D) \rightarrow x \in H \land \{y\} \subseteq D$, that is the condition of the regular.

Then (M, τ) is T_3 _space.

Remark (54)

Every regular and compact space is_normal.

By adding some conditions to the function, we get the following theorems.

Theorem (55)

Let $f: (M, \tau) \to (N, \sigma)$ be a bijective \mathcal{P}_{-} open map and \mathbb{X} is T_{i-} spaces, then \mathbb{Y} is $T_{\mathcal{P}i}$ -spaces, where i =0,1,2.

Proof. We prove the case i = 2.

Let v_2, u_2 be two points in \mathbb{Y} and $v_2 \neq u_2$. Since \mathfrak{f} is bijective, then $\exists v_1, u_1 \in \mathbb{X}$ and $\mathfrak{f}(v_1) = v_2, \mathfrak{f}(u_1) = u_2$. But, \mathbb{X} is T_2 spaces, then \exists two disjoint open sets $\mathbb{H}, \mathbb{D} \in \mathbb{X}$, whenerver $v_1 \in \mathbb{H}, u_1 \in \mathbb{D}$. Then $\mathfrak{f}(\mathbb{H}), \mathfrak{f}(\mathbb{D})$ are \mathcal{P}_2 open sets in \mathbb{Y} (because every \mathcal{P}_2 open is semi \mathcal{P}_2 ., and \mathfrak{f} is \mathcal{P}_2 open), we get $v_2 \in \mathfrak{f}(\mathbb{H}), u_2 \in \mathfrak{f}(\mathbb{D})$ and $\mathfrak{f}(\mathbb{H}) \cap \mathfrak{f}(\mathbb{D}) = \emptyset$. Hence \mathbb{Y} is $T_{\mathcal{P}_2}$ - space.

Theorem (56)

Let $f : (M, \tau) \to (N, \sigma)$ be injective Con_P map and \mathbb{Y} is T_i-space.

Then X is T_{Pi-} spaces, where i =0,1,2.

Proof. We prove the case i = 1.

Since \mathbb{Y} is T_{1-} spaces and v, u of $\mathbb{X} \ni v \neq u$, there exist two disjoint \mathcal{P}_{-} open sets $\mathbb{H}, \mathbb{D} \in \mathbb{Y}$ such that $\mathfrak{f}(v) \in \mathbb{H}, \mathfrak{f}(u) \in \mathbb{D}, \mathfrak{f}(v) \neq \mathfrak{f}(u)$. Since \mathfrak{f} is \mathcal{P}_{-} continuous, then $\mathfrak{f}^{-1}(\mathbb{H})$ and $\mathfrak{f}^{-1}(\mathbb{D})$ are \mathcal{P}_{-} open sets of \mathbb{X} , we get $v \in \mathfrak{f}^{-1}(\mathbb{H}), u \in \mathfrak{f}^{-1}(\mathbb{D})$. Hence \mathbb{X} is $T_{\mathcal{P}_{1}}$ - space.

Theorem (57)

If $f: (M, \tau) \to (N, \sigma)$ is injective $Con_{\mathcal{P}}$ map and \mathbb{Y} is $T_{\mathcal{P}i}$ -spaces, then \mathbb{X} is $T_{\mathcal{P}i}$ -spaces, where i=0,1,2.

Proof.

We prove the case i = 2.

Suppose that v, u of \mathbb{X} and $v \neq u$. Since \mathfrak{f} is one to one, then $\mathfrak{f}(v) \neq \mathfrak{f}(u)$ in \mathbb{Y} . But \mathbb{Y} is $T_{\mathcal{P}_2}$ -space, then \exists two disjoint \mathcal{P}_- open sets $\mathbb{H}, \mathbb{D} \in \mathbb{Y}$, whenever, $\mathfrak{f}(v) \in \mathbb{H}, \mathfrak{f}(u) \in \mathbb{D}$. Then $\mathfrak{f}^{-1}(\mathbb{H}), \mathfrak{f}^{-1}(\mathbb{D})$ are \mathcal{P}_- open, we get $v \in \mathfrak{f}^{-1}(\mathbb{H}), u \in \mathfrak{f}^{-1}(\mathbb{D})$ and $\mathfrak{f}^{-1}(\mathbb{H}) \cap \mathfrak{f}^{-1}(\mathbb{D}) = \emptyset$.

Then X is T_{P2} -space.