
جامعة تكريت ــ كلية التربية للبنات ــقم الرياضيـات : الرابعة

المادة: التبولوجيا العامة
عنوان المحاضرة : الخواص التبولوجية والوراثية في الفضاء التبولوجية
مدرس المادة : أ .د. رنا بهجت ياسين

Zain2016@ tu.edu.iq : الايميل الجامعي

Proposition (45)

Suppose that (M, τ) and (N, σ) are homeomorphic spaces, if (M, τ) is $T_{2 _}$space, then (N, σ) is $T_{2 _ \text {space. }}$

Proof.
Let $f:(M, \tau) \rightarrow(N, \sigma)$ be Home and if $u \neq v \in M$, then $f(u), f(v) \in N$ and $f(u) \neq f(v)$.

Since $\left((M, \tau)\right.$ is T_{2} space, we get $\exists H, D$ are two disjoint open sets of (M, τ) such that $f(u) \in H, f(v) \in D$.

But, $u \in f^{-1}(H), v \in f^{-1}(D)$ and $f^{-1}(H) \cap f^{-1}(D)=f^{-1}(H \cap D)=f^{-1}(\varnothing)=$ \emptyset. Hence (N, σ) is $T_{2_{-}}$space.

Theorem (46)

Every compact and T_{2-} space is regular.

Proof.

Let (M, τ) be compact $T_{2_{-}}$space, let $x \in M$ and F be subset of $M, \ni x \notin F$. Since (M, τ) is $N_{P_{-}}$compact. we get F is compact. There four $\exists H, D$ are two open sets $\ni x \in H$ and $F \subseteq D, H \cap D=\emptyset$. Then (M, τ) is regular.

Definition (47)

The (M, τ) is T_{3-} space if M is regular and $T_{1 _ \text {space. }}$.

Corollary (48)

Every compact and $T_{2 _}$space is T_{3-} space.

Proof.

Since $T_{2 _}$space is T_{1} space, by theorem (46). Every compact and $T_{2 _}$space is regular. We have (M, τ) is T_{3} space.

Proposition (49)

Every T_{3-} space is $T_{2 _}$space.

Proof.

Let (M, τ) be T_{3} space (regular and $T_{1 _}$space) and $x, y \in M, x \neq y$.
Since (M, τ) is $T_{1 _}$space, then $\{x\},\{y\}$ is closed sets such that $x \notin\{y\}$.
Since (M, τ) is regular, then $\exists H, D \in \tau, H \cap D=\emptyset,(x \in H \wedge\{y\} \subseteq D) \rightarrow x \in H$ $\wedge y \in D$. Then (M, τ) is $T_{2_{-}}$space.

Theorem (50)

A compact and T_{2-} space is normal.

Proof.

Suppose that (M, τ) is compact $T_{2 _}$space and if, $H, D \subseteq M$ are disjoint closed sets, became H, D are compact sets in M.

Let $x \in H$ be arbitrary and $H \cap D=\emptyset$, then $x \notin D$. By $T_{2 _}$space, \exists disjoint open sets $Z_{x}, I \in \tau \ni x \in Z_{x}, D \subseteq \tau$.

The family $\left\{Z_{x}: x \in H\right\}$, $\operatorname{so}\left\{Z_{x_{i}}: i=1,2, \ldots, n\right\}$. Then $H \subseteq \bigcup_{i=1}^{n} Z_{x_{i}}$, we get $H \subseteq Z \rightarrow \bigcup_{i=1}^{n} Z_{x_{i}}=Z$. Furthermore, $D \subseteq I_{i}$ for $1 \leq i \leq n$, then $D \subseteq \bigcap_{i=1}^{n} I_{i}$, we get $D \subseteq I \rightarrow \bigcap_{i=1}^{n} I_{i}=I$.

Since $I_{i} \cap_{1}^{n} Z_{x_{r}}=\emptyset$ for $1 \leq i \leq n$,
$Z_{x_{r}} \cap_{1}^{n} I=Z_{x_{r}} \cap\left(\cap_{i=1}^{n} I_{i}\right)=\emptyset$ for $1 \leq r \leq n, I \cap Z=I \cap\left(\bigcup_{i=1}^{n} Z_{x_{i}}\right)=\emptyset$

So, $H \subseteq Z, D \subseteq I$. Then (M, τ) is normal.

Definition (51)

The (M, τ) is $T_{4 _}$space if (M, τ) is normal and $T_{1 _ \text {_space. }}$.

Corollary (52)

Every compact and $T_{2 _}$space is T_{4-} space.

Proof.

Since $T_{2 _}$space is $T_{1 _ \text {space }}$, by theorem above Every compact and T_{2-} space is normal. We have (M, τ) is $T_{4 _}$space.

Theorem (53)

Every T_{4-} space is $T_{3 _}$space.

Proof.

If (M, τ) is $T_{4 _}$space (N_{P-} normal and $T_{1 _}$space) and let $x \neq y \in M$.
Since (M, τ) is $T_{1 _}$space $\rightarrow\{x\}$ and $\{y\}$ is closed sets $\rightarrow x \notin\{y\}, y \notin\{x\}$ and (M, τ) is normal $\rightarrow \exists H, D \in \tau, H \cap D=\varnothing,(\{x\} \subseteq H \wedge\{y\} \subseteq D) \rightarrow x \in H$ $\wedge\{y\} \subseteq D$, that is the condition of the regular.

Then (M, τ) is T_{3-} space.

Remark (54)

Every regular and compact space is_normal.

By adding some conditions to the function, we get the following theorems.

Theorem (55)

Let $\mathfrak{f}:(M, \tau) \rightarrow(N, \sigma)$ be a bijective $\mathcal{P}_{\text {_open }}$ map and \mathbb{X} is T_{i} _ spaces, then \mathbb{Y} is $\mathrm{T}_{\mathcal{P}_{\mathrm{i}}}$ spaces, where $\mathrm{i}=0,1,2$.

Proof. We prove the case $\mathrm{i}=2$.

Let v_{2}, u_{2} be two points in \mathbb{Y} and $v_{2} \neq u_{2}$. Since f is bijective, then $\exists v_{1}, u_{1} \in$ \mathbb{X} and $\mathfrak{f}\left(v_{1}\right)=v_{2}, \mathfrak{f}\left(u_{1}\right)=u_{2}$. But, \mathbb{X} is T_{2-} spaces, then \exists two disjoint open sets $\mathbb{H}, \mathbb{D} \in \mathbb{X}$, whenerver $v_{1} \in \mathbb{H}, u_{1} \in \mathbb{D}$. Then $\mathfrak{f}(\mathbb{H}), \mathfrak{f}(\mathbb{D})$ are \mathcal{P} _open sets in \mathbb{Y} (because every $\mathcal{P}_{\mathbf{\prime}}$ open is $\operatorname{semi}_{\mathcal{P}} O_{\text {., }}$, and \mathfrak{f} is $\mathcal{P}_{\mathbf{O}}$ open), we get $v_{2} \in$ $\mathfrak{f}(\mathbb{H}), u_{2} \in \mathfrak{f}(\mathbb{D})$ and $\mathfrak{f}(\mathbb{H}) \cap \mathfrak{f}(\mathbb{D})=\emptyset . \quad$ Hence \mathbb{Y} is $T_{\mathcal{P}_{2}}$ space.

Theorem (56)

Let $f:(M, \tau) \rightarrow(N, \sigma)$ be injective $\operatorname{Con}_{\mathcal{P}}$ map and \mathbb{Y} is $\mathrm{T}_{\mathrm{i}_{-}}$space.
Then \mathbb{X} is $\mathrm{T}_{\mathcal{P}_{\mathrm{i}}}$ spaces, where $\mathrm{i}=0,1,2$.
Proof. We prove the case $\mathrm{i}=1$.
Since \mathbb{Y} is $T_{1 _}$spaces and v, u of $\mathbb{X} \ni v \neq u$, there exist two disjoint \mathcal{P} _open sets $\mathbb{H}, \mathbb{D} \in \mathbb{Y}$ such that $f(v) \in \mathbb{H}, \mathfrak{f}(u) \in \mathbb{D}, \mathfrak{f}(v) \neq \mathfrak{f}(u)$. Since \mathfrak{f} is \mathcal{P} _continuous, then $\mathfrak{f}^{-1}(\mathbb{H})$ and $\mathfrak{f}^{-1}(\mathbb{D})$ are \mathcal{P} _open sets of \mathbb{X}, we get $v \in$ $\mathfrak{f}^{-1}(\mathbb{H}), u \in \mathfrak{f}^{-1}(\mathbb{D})$. Hence \mathbb{X} is $T_{\mathcal{P}_{1}-}$ space.

Theorem (57)

If $\mathfrak{f}:(M, \tau) \rightarrow(N, \sigma)$ is injective $\operatorname{Con}_{\mathcal{P}}$ map and \mathbb{Y} is $\mathrm{T}_{\mathcal{P}_{\mathbf{1}}}$ spaces, then \mathbb{X} is

Proof.
We prove the case $\mathrm{i}=2$.
Suppose that v, u of \mathbb{X} and $v \neq u$. Since \mathfrak{f} is one to one, then $\mathfrak{f}(v) \neq \mathfrak{f}(u)$ in \mathbb{Y}. But \mathbb{Y} is $\mathrm{T}_{\mathcal{P} 2 _}$space, then \exists two disjoint \mathcal{P} _open sets $\mathbb{H}, \mathbb{D} \in \mathbb{Y}$, whenever, $\mathfrak{f}(v) \in$ $\mathbb{H}, \mathfrak{f}(u) \in \mathbb{D}$. Then $\mathfrak{f}^{-1}(\mathbb{H}), \mathfrak{f}^{-1}(\mathbb{D})$ are \mathcal{P} _open, we get $v \in \mathfrak{f}^{-1}(\mathbb{H}), u \in \mathfrak{f}^{-1}(\mathbb{D})$ and $\mathfrak{f}^{-1}(\mathbb{H}) \cap \mathfrak{f}^{-1}(\mathbb{D})=\varnothing$.

Then \mathbb{X} is $\mathrm{T}_{\mathcal{P} 2 _}$space.

