

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : الخواص الوراثية في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq Separation axioms that can be moved and raised by adding some conditions to the maps.

Theorem (39)

If $((N, \sigma)$ is a T_i -space. Let $f: (M, \tau) \to (N, \sigma)$ be an injective *Con* map, then (M, τ) is T_i _space. Where i=0,1,2

Proof.

We prove that i=0

Let $u \neq v \in M$ then $f(u) \neq f(v)$ in (N, σ) (because f is a injective). Since (N, σ) is a T_0 -space, then $\exists H$ is *open* set of (N, σ) such that $f(u) \in H$ and $f(v) \notin H$.

Since f is a Con, therefore $f^{-1}(H)$ is a open set in (M, τ) containing u but not v, $u \in f^{-1}(H), v \notin f^{-1}(H)$. Hence (M, τ) is a T_0 _space.

in the some way prove i=1,2

Proposition(40)

Let $f: (M, \tau) \to (N, \sigma)be$ surjective OM and if (M, τ) is a T_i -space, then (N, σ) is a T_i -space, where i = 0, 1, 2.

Proof.

To prove that i = 1

Assume that $\dot{u} \neq \dot{v} \in N$.Since f is a surjective, Then $\exists u \neq v \in M \ni \dot{u} = f(u) \& \dot{v} = f(v)$ and $f(u) \neq f(v)$.

We get $\exists H, D \text{ are two open sets of } (M, \tau)$ such that $u \in H \land v \notin H$ and $u \notin D \land v \in D$ (because (M, τ) is a T_{1} -space).

Hence $f(u) \in f(H)$, $f(v) \in f(D)$, since f is a OM, hence f(u), f(v) are open sets of $(N, \sigma) \ni \dot{u} \in f(H)$, but $\dot{v} \notin f(D)$ and $\dot{v} \in f(D)$ but $\dot{u} \notin f(H)$. Then (N, σ) is a T_1 -space. In the some way prove i=0,2.

Theorem (41)

Every compact subset of T_2 _space is a closed.

Proof.

Let (M, τ) be T_{2} -space, F be_compact subset of M and let $p \in E = M - F, \forall x \in F$. Then \exists disjoint open subsets H_x, D_x containing x and p respectively. $F = \bigcup_{x \in F} \{x\} \subseteq \bigcup_{x \in F} H_x$, there four $\{H_x\} \ x \in F$ is open cover of F, but F is compact. Then $\exists x_1, \dots, x_n, F \subseteq \bigcup H_{x_1} \cup H_{x_2} \dots \cup H_{x_n} = H$ and $D = D_{x_1} \cap D_{x_2} \dots \cap D_{x_n}$, D is open such that $p \in D$, $D \cap F = \emptyset$ if not. Let $t \in D \cap F \to t \in D \land t \in F$. Then $t \in D_{xi}, \forall i = 1, 2, \dots, n$ and $t \in H_{xj}$ for some $j, 1 \leq j \leq n$.

We get $D \cap F = \emptyset \rightarrow D \subseteq E$ and p is an interior point of E. Hence F is a closed.

Remarks (42)

- 1. The set *E* is compact subset of T_2 space (M, I(X)) and $p \notin E$, $p \in M$ then \exists two disjoint open sets H, D of $M \ni E \subseteq H \land p \in D$.
- 2. Let $f: (M, \tau) \to (N, \sigma)$ be *Con* map, if $A \subseteq M$ is compact relative to (M, τ) , then f(A) is compact.
- 3. The set closed subset of compact space is compact.

Proposition (43)

Let (M, τ) be compact space and (N, σ) be T_2 _space, if $f: (M, \tau) \to (N, \sigma)$ is bijective and *Con*, then *f* is *Home*.

Proof.

To prove that f is *Home*, it is enough to show that f^{-1} is *Con*.

For this we must show that f(F) is *closed* set in (N, σ) , for any closed subset in (M, τ)

Being a *closed* subset of a compact set (M, τ) , F is compact set. then f(F) is compact subset of T_2 -space (N, σ) and f(F) is *closed* set, for any $F \subseteq M$ is closed set which implies $f(F) \subseteq N$ is *closed* set, this f^{-1} is *Con*.

Then f is Home. because [f are bijective, Conand f^{-1} is Con

Theorem (44)

Let $f: (M, \tau) \to (N, \sigma)$ be *Con* and bijective map, if (M, τ) compact space and (N, σ) is T_2 _space. Then *M* and *N* are homeomorphic.

Proof.

Let f(A) be openset in (N, σ) , since (M, τ) is compact, \forall open cover there corresponds a finite sub cover and M is T_2 , for any $u \neq v \in M$, \exists two disjoint H and D are open sets in (N, σ) such that, $f(u) \in H$, $f(v) \in D$. Then open set A in (M, τ) , f(A) is open set in (N, σ) and M - f(A) is

closed set $in(N, \sigma)$.

Now to prove $f^{-1} = h: N \to M$ is Con. Also, to prove $h^{-1}(A)$ is open(closed) set in (N, σ) .

Since A is open set and M - A is closed set in (M, τ) , therefore $h^{-1}(M - A) = M - h^{-1}(A)$, we have $h^{-1}(N - A) = M - f(A)$ --(i) [because $h^{-1} = f$]. From (i) for each closed set in (M, τ) we get h^{-1} is closed set in (N, σ) and h is *Con* map.

Therefore, f is *Home*, then M and N are homeomorphic.