

جامعة تكريت ـ كلية التربية للبنات ـقسم الرياضيات المرحلة : الرابعة

المـادة: التبولوجيا العامة

عنوان المحاضرة : الترابط في الفضاء التبولوجية مدرس المادة : أ .د. رنـا بهجت ياسبين

الايميل الجامعي : Zain 2016@ tu.edu.iq

In this section, study the notions of Connectedness
if \mathbb{X} can be expressed as the union of two disjoint non-empty open subsets of \mathbb{X}, otherwise \mathbb{X} is said to be connected space.

Definition (19)

Let (M, τ) be topological, for any two non-empty disjoint open subsets H and D of M are said to be separated sets briefly $(S e p a)$ if $H \cap c l(D)=\varnothing$ and $D \cap c l(H)=\varnothing$.

Remarks

1-Every two disjoint open (closed) subsets of any space are separated space.

2- Let \mathbb{H} and \mathbb{D} be separated subsets of \mathbb{X}, then if $\mathbb{D} \subseteq \mathbb{H}$ and $\mathcal{S} \subseteq \mathcal{K}$, then \mathbb{D} and \mathcal{S} are also separated

Theorem

Every two open (closed) subsets of \mathbb{X} are separated, iff they are disjoint.

Proof.

Any two \mathbb{H}, \mathbb{D} are separated sets, then two open sets and $\operatorname{cl}(\mathbb{H})=\mathbb{H}, \mathrm{cl}(\mathbb{D})=\mathbb{D}$,
so that $\mathbb{H} \cap \operatorname{cl}(\mathbb{D})=\emptyset$ and $\mathbb{D} \cap \operatorname{cl}(\mathbb{H})=\emptyset$, then $\mathbb{H} \cap \mathbb{D}=\emptyset$.
Conversely,
If \mathbb{H}, \mathbb{D} are both disjoint open, then \mathbb{H}^{c} and \mathbb{D}^{c} are both closed, so that; $\mathbb{H} \cap \mathbb{D}=$ $\emptyset \rightarrow \mathbb{H} \subseteq \mathbb{D}^{\mathrm{c}}$ and $\mathbb{D} \subseteq \mathbb{H}^{c}$, also $\mathrm{cl}_{\mathcal{P}}\left(\mathbb{D}^{\mathrm{c}}\right)=\mathbb{D}^{\mathrm{c}}$ and $\mathrm{cl}\left(\mathbb{H}^{\mathrm{c}}\right)=\mathbb{H}^{\mathrm{c}}$.

We get $\operatorname{cl}(\mathbb{D}) \subseteq \operatorname{cl}\left(\mathbb{H}^{c}\right)=\mathbb{H}^{c}$ and $\operatorname{cl}(\mathbb{H}) \subseteq \operatorname{cl}\left(\mathbb{D}^{c}\right)=\mathbb{D}^{c}$.
Hence \mathbb{H} and \mathbb{D} are separated sets, so that $\mathbb{H} \cap \operatorname{cl}(\mathbb{D})=\emptyset, \mathbb{D} \cap \operatorname{cl}(\mathbb{H})=\varnothing$.■

Remark (20)

The space (M, τ) is said to be disconnected (Dconnt) if and only if it is the union of two non _empty separated sets. That is there exist two non-empty disjoint separated sets D, H such that $H \cap c l(D)=\varnothing$ and $D \cap c l(H)=\varnothing$ and $H \cup D=E$. We say that E is said to be Connected if and only if it is not Dconnt.

Theorem (21)

The space (M, τ) is connt. if and only if M cannot be expressed as the union of two disjoint non_ empty open set of (M, τ).

Proof.

Suppose that (M, τ) is Connt space and $M=H \cup D$, where $H \neq \emptyset \neq D$ are closed sets, then $H=D^{c}$ and $D=H^{c}$ (because $M=H \cup D$ and $H \cap D=\emptyset$). Since $H=D^{c}$ and D is closed set and $D=H^{c}$ and H is closed set, we get $H \in \tau$ and $H \in \tau$ Then (M, τ) is Dconnt this is contradiction. Hence $M \neq H \cup D$, where H, D are closed sets, $H \cap D=\varnothing$ and $H \neq \emptyset \neq D$.

In a similar way we prove the opposite direction.

Proposition(22)

The space (M, τ) is Connt if and only if any subsets of M which are both CO sets are M and \emptyset.

Proof. Follows from theorem (21).

Proposition (23)

Each two non-empty A, B subsets of (M, τ) are Sepa. If A is Conntset of (M, τ) with $A \subseteq B \subseteq \operatorname{cl}(A)$. Then B is Connt.

Proof.

Claim B is not Connt. Then there be Sepa. set H and D such that $B=H \cup D$, whenever $H \cap \operatorname{cl}(D)=c l(H \cap D)=\emptyset$ for each H and D are non_ empty. By Proposition 22 , we obtain $A \subseteq H$ or $A \subseteq D$.

1. let $A \subseteq H$ then $c l(A) \subseteq c l(H)$ and $c l(H) \cap D=\emptyset$. By hypothesis, $D \subseteq B \subseteq$ $\operatorname{cl}(A)$ and $\operatorname{cl}(A) \cap D=D=\varnothing$, this is contradiction
2. let $A \subseteq D$ similarly we get H is empty, this is contradiction [because $H \neq \varnothing$]. Therefore B is Connt \quad

Proposition (24)

If H and D are Sepa sets of (M, τ) and G is Connt set of (M, τ) such that $G \subseteq H \cup$ D. Then $G \subseteq H$ or $G \subseteq D$.

Proof.

Assam that G is not Conntset and $G=(G \cap H) \cup(G \cap D)$, suppose that ($G \cap$ $H) \cap c l(G \cap D) \subseteq H \cap c l(D)=\varnothing \quad$ and $\quad(G \cap H) \cap c l(G \cap D) \subseteq D \cap c l(H)=\varnothing$, then $\quad G$ is not Connt only if $(G \cap H)=\emptyset$ and $(G \cap D)=\varnothing$, which is a contradiction. Hence either $(G \cap H)=\emptyset$ or $(G \cap D)=\emptyset$. This $G \subseteq H$ or $G \subseteq D$.

Proposition(25)

Each two non-empty A, B subsets of a (M, τ), if A and B are Connt and $A \cap B \neq \varnothing$ $\operatorname{in}(M, \tau)$. Then $A \cup B$ is Connt.

Proof.

Let $A \cup B$ be not Connt, then $\exists H, D$ are Sepa in M such that $A \cup B=H \cup D$. Then $A \subseteq H \cup D$, by Proposition (24) implies that $A \subseteq H$ or $A \subseteq D$ and $B \subseteq H$ or $B \subseteq D$.

If $A \subseteq H$ and $B \subseteq H$, then $A \cup B=H$ and $D=\emptyset$, this is contradiction, so $A \subseteq H$ and $B \subseteq D$.Similarly $A \subseteq D$ and $B \subseteq H$.

Hence $c l(A) \cap B \subseteq c l(H) \cap D=\emptyset \operatorname{and} c l(B) \cap A \subseteq c l(H) \cap D=\varnothing$
Thus Aand B is Sepa in M, this is contradiction. Hence $A \cup B$ is Connt.

