

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : الترابط في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq In this section, study the notions of Connectedness

if X can be expressed as the union of two disjoint non-empty open subsets of X, otherwise X is said to be connected space.

Definition (19)

Let (M, τ) be topological, for any two non-empty disjoint open subsets H and D of M are said to be separated sets briefly (*Sepa*) if $H \cap cl(D) = \emptyset$ and $D \cap cl(H) = \emptyset$.

Remarks

1-Every two disjoint open (closed) subsets of any space are separated space.

2- Let \mathbb{H} and \mathbb{D} be separated subsets of \mathbb{X} , then if $\mathbb{D} \subseteq \mathbb{H}$ and $S \subseteq \mathcal{K}$,

then $\mathbb D$ and $\mathcal S$ are also separated

Theorem

Every two open (closed) subsets of X are separated, iff they are disjoint.

Proof.

Any two \mathbb{H} , \mathbb{D} are separated sets, then two open sets and $cl(\mathbb{H}) = \mathbb{H}$, $cl(\mathbb{D}) = \mathbb{D}$, so that $\mathbb{H} \cap cl(\mathbb{D}) = \emptyset$ and $\mathbb{D} \cap cl(\mathbb{H}) = \emptyset$, then $\mathbb{H} \cap \mathbb{D} = \emptyset$.

Conversely,

If \mathbb{H}, \mathbb{D} are both disjoint open, then \mathbb{H}^c and \mathbb{D}^c are both closed, so that; $\mathbb{H} \cap \mathbb{D} =$

 $\emptyset \to \mathbb{H} \subseteq \mathbb{D}^{c}$ and $\mathbb{D} \subseteq \mathbb{H}^{c}$, also $cl_{\mathcal{P}}(\mathbb{D}^{c}) = \mathbb{D}^{c}$ and $cl(\mathbb{H}^{c}) = \mathbb{H}^{c}$.

We get $cl(\mathbb{D}) \subseteq cl(\mathbb{H}^c) = \mathbb{H}^c$ and $cl(\mathbb{H}) \subseteq cl(\mathbb{D}^c) = \mathbb{D}^c$.

Hence \mathbb{H} and \mathbb{D} are separated sets, so that $\mathbb{H} \cap cl(\mathbb{D}) = \emptyset$, $\mathbb{D} \cap cl(\mathbb{H}) = \emptyset$.

Remark (20)

The space (M, τ) is said to be disconnected (Dconnt) if and only if it is the union of two non _empty separated sets. That is there exist two non-empty disjoint separated sets D, H such that $H \cap cl(D) = \emptyset$ and $D \cap cl(H) = \emptyset$ and $H \cup D = E$. We say that E is said to be Connected if and only if it is not Dconnt.

Theorem (21)

The space (M, τ) is *connt*. if and only if *M* cannot be expressed as the union of two disjoint non_ empty open set of (M, τ) .

Proof.

Suppose that (M, τ) is *Connt* space and $M = H \cup D$, where $H \neq \emptyset \neq D$ are closed sets, then $H = D^c$ and $D = H^c$ (because $M = H \cup D$ and $H \cap D = \emptyset$). Since $H = D^c$ and D is closed set and $D = H^c$ and H is closed set, we get $H \in \tau$ and $H \in \tau$ Then (M, τ) is *Dconnt* this is contradiction. Hence $M \neq H \cup D$, where H, D are closed sets, $H \cap D = \emptyset$ and $H \neq \emptyset \neq D$.

In a similar way we prove the opposite direction. ■

Proposition(22)

The space (M, τ) is *Connt* if and only if any subsets of *M* which are both CO sets are *M* and \emptyset .

Proof. Follows from theorem (21). ■

Proposition (23)

Each two non-empty A, B subsets of (M,τ) are Sepa . If A is Conntset of (M,τ) with $A \subseteq B \subseteq cl(A)$. Then B is Connt.

Proof.

Claim *B* is not *Connt*. Then there be *Sepa*. set *H* and *D* such that $B = H \cup D$, whenever $H \cap cl(D) = cl(H \cap D) = \emptyset$ for each *H* and *D* are non_ empty. By Proposition 22, we obtain $A \subseteq H$ or $A \subseteq D$.

1. let $A \subseteq H$ then $cl(A) \subseteq cl(H)$ and $cl(H) \cap D = \emptyset$. By hypothesis, $D \subseteq B \subseteq cl(A)$ and $cl(A) \cap D = D = \emptyset$, this is contradiction

2. let $A \subseteq D$ similarly we get *H* is empty, this is contradiction [because $H \neq \emptyset$]. Therefore *B* is *Connt*

Proposition (24)

If *H* and *D* are Sepa sets of (M, τ) and *G* is Connt set of (M, τ) such that $G \subseteq H \cup D$. *D*. Then $G \subseteq H$ or $G \subseteq D$.

Proof.

Assam that *G* is not *Connt*set and $G = (G \cap H) \cup (G \cap D)$, suppose that $(G \cap H) \cap cl(G \cap D) \subseteq H \cap cl(D) = \emptyset$ and $(G \cap H) \cap cl(G \cap D) \subseteq D \cap cl(H) = \emptyset$, then *G* is not *Connt* only if $(G \cap H) = \emptyset$ and $(G \cap D) = \emptyset$, which is a contradiction. Hence either $(G \cap H) = \emptyset$ or $(G \cap D) = \emptyset$. This $G \subseteq H$ or $G \subseteq D$.

Proposition(25)

Each two non-empty A, B subsets of a (M, τ) , if A and B are Connt and $A \cap B \neq \emptyset$ in (M, τ) . Then $A \cup B$ is Connt.

Proof.

Let $A \cup B$ be not *Connt*, then $\exists H, D$ are *Sepa* in *M* such that $A \cup B = H \cup D$. Then $A \subseteq H \cup D$, by Proposition (24) implies that $A \subseteq H$ or $A \subseteq D$ and $B \subseteq H$ or $B \subseteq D$. If $A \subseteq H$ and $B \subseteq H$, then $A \cup B = H$ and $D = \emptyset$, this is contradiction, so $A \subseteq H$ and $B \subseteq D$.Similarly $A \subseteq D$ and $B \subseteq H$. Hence $cl(A) \cap B \subseteq cl(H) \cap D = \emptyset$ and $cl(B) \cap A \subseteq cl(H) \cap D = \emptyset$

Thus Aand B is Sepa in M, this is contradiction. Hence $A \cup B$ is Connt.