

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : استمرارية الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq

Definition (1)

Let (M, τ) and (N, σ) be a topological spaces. A map $f: (M, \tau) \to (N, \sigma)$ is continuous if $f^{-1}(\mathbb{W})$ of each open set \mathbb{W} in $\widetilde{\mathcal{M}}$ is open set in \mathcal{M} .

Proposition (2)

Let (M, τ) , (N, σ) and $(\overline{\mathcal{M}}, \Im(\overline{\mathbb{X}}))$ are three topological spaces. If $f: (M, \tau) \to (N, \sigma)$ and $g: (N, \sigma) \to (\overline{\mathcal{M}}, \Im(\overline{\mathbb{X}}))$ are continuous maps, then $gof: (M, \tau) \to (\overline{\mathcal{M}}, \Im(\overline{\mathbb{X}}))$ is continuous.

Proof.

Suppose that \mathbb{H} is open set in $(\overline{\mathcal{M}}, \Im(\overline{\mathbb{X}}))$. Since g is continuous, whenever $g^{-1}(\mathbb{H})$ is open set in (N, σ) . Now, $(gof)^{-1}\mathbb{H} = f^{-1}(g^{-1}(\mathbb{H}))$.

So $f^{-1}(\mathbb{H})$ is open set in (M, τ) because $g^{-1}(\mathbb{H})$ is open set in (N, σ)). Since f is continuous map. Then $gof : (M, \tau) \to (\overline{\overline{\mathcal{M}}}, \Im(\overline{\overline{\mathbb{X}}}))$ is continuous.

The study present the definition and characterization of continuous map in terms of inverse image of closed.

Theorem (3)

Let \mathbb{W} be *closed* set in (N, σ) and let $f: (M, \tau) \to (N, \sigma)$

is continuous map if and only if $f^{-1}(W)$ is closed set in \mathcal{M} , for each closed set W in (N, σ)

Proof.

Suppose that $f: (M, \tau) \to (N, \sigma)$ is continuous and W is closed set in (N, σ) we get \mathbb{W}^{c} is *open* set in (N, σ) .Since $f^{-1}(\mathbb{W}^{c}) = f^{-1}(\mathbb{W})^{c}$ is $\mathcal{N}_{\mathcal{P}}$.Oset in (M, τ) hence $f^{-1}(\mathbb{W})$ is closed set in (M, τ) whenever W is closed set in (N, σ) .

Conversely,

For each W is closed set in (N, σ) and $f^{-1}(W)$ is closed set in (M, τ) . Suppose that (M, τ) is open set in (N, σ) then W^c is closed set in (N, σ) . By hypothesis $f^{-1}(W^c) = f^{-1}(W)^c$ is closed set in (M, τ) , hence $f^{-1}(W)$ is open set in (M, τ) . We get f is continuous.

In the following proposition, we establish a characterization of continuous maps in terms of closure.

Proposition (4)

 $cl(\mathfrak{f}^{-1}(\mathbb{D})) \subseteq \mathbb{D}.$

A map $f: (M, \tau) \to (N, \sigma)$ is continuous if and only if $\mathfrak{f}(\mathfrak{cl}(\mathbb{A})) \subseteq \mathfrak{cl}(\mathfrak{f}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathcal{M}$.

Proof.

Let $f: (M, \tau) \to (N, \sigma)$ be a continuous map and $\mathbb{A} \subseteq \mathcal{M}$, be arbitrary ,so $\mathfrak{f}(\mathbb{A}) \subseteq$ N.Then $\mathrm{cl}(\mathfrak{f}(\mathbb{A}))$ is closed in (N, σ) . By theorem (3), we get $\mathfrak{f}^{-1}(\mathrm{cl}(\mathfrak{f}(\mathbb{A})))$ is closed in (M, τ) . Since $\mathfrak{f}(\mathbb{A}) \subseteq \mathrm{cl}(\mathfrak{f}(\mathbb{A})) \to \mathbb{A} \subseteq \mathfrak{f}^{-1}(\mathrm{cl}(\mathfrak{f}(\mathbb{A})))$ and $\mathrm{cl}(\mathbb{A}) \subseteq$ $\mathrm{cl}(\mathfrak{f}^{-1}(\mathrm{cl}(\mathfrak{f}(\mathbb{A}))) =$ $\mathfrak{f}^{-1}(\mathrm{cl}(f(\mathbb{A}))$. Then $\mathfrak{f}(\mathrm{cl}(\mathbb{A})) \subseteq \mathrm{cl}(\mathfrak{f}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathcal{M}$. Conversely, For each $\mathbb{A} \subseteq \mathcal{M}$ which that, $\mathfrak{f}(\mathrm{cl}(\mathbb{A})) \subseteq \mathrm{cl}(\mathfrak{f}(\mathbb{A}))$. If \mathbb{D} is closed set in (N, σ) . Since $\mathrm{cl}(\mathbb{D}) = \mathbb{D}$ then $\mathfrak{f}(\mathrm{cl}(\mathfrak{f}^{-1}(\mathbb{D}))) \subseteq \mathrm{cl}(\mathfrak{f}(\mathfrak{f}^{-1}(\mathbb{D})))$ which implies that

But, always $f^{-1}(\mathbb{D}) \subseteq cl(f^{-1}(\mathbb{D}))$, so that $cl(f^{-1}(\mathbb{D})) = f^{-1}(\mathbb{D})$ we get $f^{-1}(\mathbb{D})$ is closed set in (N, σ) . Then f is continuous map by using (theorem 3).

Now we present the definition and characterization of Nano Penta totally continuous map.

Definition

A map $f: (M, \tau) \to (N, \sigma)$ is totally continuous if $f^{-1}(\mathbb{W})$ of each open set open subset \mathbb{W} in $\check{\mathcal{M}}$ is *clopen* set in \mathcal{M} .

Theorem

Let $f: (M, \tau) \to (N, \sigma)$ be totally continuous . Then f is con map.

Proof.

To prove this we to use Theorem above

Theorem (4.1.15)

A map $f: (M, \tau) \to (N, \sigma)$ is totally continuous iff $\mathfrak{f}^{-1}(\mathbb{W})$ of each \mathbb{W}

closed set in N is clopen in \mathcal{M} .

Proof.

If $f: (M, \tau) \to (N, \sigma)$ is a totally continuous map and W is closed set in N, we get W^c is closed set in N.

Then $f^{-1}(\mathbb{W}^c)$ is clopen in $\mathcal{M}($ because f is totally continuous thus $f^{-1}(\mathbb{W})$ is clopen in \mathcal{M} .

Conversely,

Suppose that $f^{-1}(\mathbb{W})$ is clopen in \mathcal{M} , for each \mathbb{W} is closed set in N and let \mathbb{W}^c is open set in N, according to the hypothesis $(f^{-1}(\mathbb{W}))^c = f^{-1}(\mathbb{W}^c)$ is closed set in \mathcal{M} .

Then $f: \mathcal{M} \to \mathbb{N}$ is a totally continuous (because $f^{-1}(\mathbb{W})$ is *clopen* in \mathcal{M}).

Theorem

Let $f: (M, \tau) \to (N, \sigma)$ be map. If f is totally continuous, then f is Con.

Proof.

Suppose that $f: (M, \tau) \to (N, \sigma)$ is a totally continuous map, by using (Proposition above)

we get $f^{-1}(W)$ of each closed set. W in N, is clopen in \mathcal{M} .

Since every clopen in \mathcal{M} is closed set in \mathcal{M} become $\mathfrak{f}^{-1}(\mathbb{W})$ of each \mathbb{W} is closed set in \mathcal{N} , is closed set in \mathcal{M} .

Thus $f: (M, \tau) \to (N, \sigma)$ is a Con. map.