

> جامعة تكريت - كلية التربية للبنات ـقسم الرياضيات

عنوان المحاضرة : بعض خواص الترابط في الفضاء التبولوجية
مدرس المـادة : أ .د. رنـا بهجت ياسبين

Zain 2016@ tu.edu.iq : الايميل الجامعي

Proposition (26)

If E is a Connt subset of M, then $\operatorname{cl}(E)$ is Connt.

Proof.

Let E be Connt subset of a (M, τ) and suppose that $\operatorname{cl}(E)$ is Dconnt, it follows that there exist A and B are non_ empty sets $\ni \operatorname{cl}(A) \cap B=\varnothing=\operatorname{cl}(B) \cap$ $A . \operatorname{So}, \operatorname{cl}(E)=A \cup B$, then $E \subseteq \operatorname{cl}(E)=A \cup B$, Since E is a Connt thus $E \subseteq A \cup$ B and $E \subseteq A$ or $E \subseteq B$. If, $E \subseteq A, \quad c l(E) \subseteq c l(A)$ then $\operatorname{cl}(E) \cap B \subseteq c l(A) \cap$ $B=\emptyset-(1)$. Since $c l(E)=A \cup B \rightarrow B \subseteq c l(E) \rightarrow c l(E) \cap B=B \rightarrow B=\emptyset$.For $c l(E) \cap B=\varnothing($ from $(1))$ and H in $M \ni c l(E)=H \cup D$.Since $E=(H \cap E) \cup$ $(D \cap E)$ and $c l(H \cap E) \subseteq c l(H)$ and $c l(D \cap E) \subseteq c l(D)$ and $H \cap D=\emptyset$,then $\operatorname{cl}(D \cap E) \cap H=\varnothing$, we get $\operatorname{cl}(D \cap E) \cap(H \cap E)=\emptyset$.

Similarly, $\operatorname{cl}(H \cap E) \cap(D \cap E)=\emptyset$. Therefore, E is Conntthis contradiction for $B \neq \emptyset$. Similarly, $E \subseteq B \rightarrow A=\emptyset$. Hence, if E is Connt, then $\operatorname{cl}(E)$ is Connt.

$\underline{\text { Proposition(27) }}$

Let $f:(M, \tau) \rightarrow(N, \sigma)$ be a surjection Cont. map. If (M, τ) is Connt, then (N, σ) is Connt too.

Proof.

Let (N, σ) be not Connt and $M=H \cap D$, where H, D are separated non_empty open sets in (N, σ) Thus $M=f^{-1}(H) \cup f^{-1}(D)$
where $f^{-1}(H), f^{-1}(D)$ are Sepa non_ empty open sets in N this is contradiction, then (N, σ) is Connt.

Remarks (2.1.11)

1. \mathbb{X} is connt. set, iff it is not the union of two non-empty separated sets.
2. If \mathbb{X} is the union of two disjoint non_ empty $\mathcal{P}_{\mathbf{-}}$ open sub sets then \mathbb{X} is DDconnt.
3. If E is connt. set of \mathbb{X} and \mathbb{H}, \mathbb{D} are $\operatorname{Separ}_{\mathcal{P}}$ sets of \mathbb{X} with $E \subseteq \mathbb{H} \cup \mathbb{D}$,then either $\mathrm{E} \subseteq \mathbb{H}$ or $\mathrm{E} \subseteq \mathbb{D}$.
4. If E subset of \mathbb{X} is a connt. . Then $\mathrm{cl}_{\mathcal{P}}(\mathrm{E})$ is connt.

We know that if \mathbb{H} and \mathbb{D} are connt. sets, then $\mathbb{H} \cup \mathbb{D}$ is Dconnt. set, but by adding some condition we can prove that connt. sets by the following theorem.

Theorem (2.1.12)

If \mathbb{H} and \mathbb{D} is connt. sets, such that $\mathbb{H} \cap \mathbb{D} \neq \emptyset$. Then $\mathbb{H} \cup \mathbb{D}$ is connt. set.

Proof.

Suppose that $\mathbb{H}, \mathbb{D} \subseteq \mathbb{X} \ni \mathbb{H} \cap \mathbb{D} \neq \varnothing$ and \mathbb{H}, \mathbb{D} are connt. and $\mathbb{H} \cup \mathbb{D}$ is connt. If \mathbb{X}, \mathbb{Y} are two disjoint non_empty open sets and $\mathbb{X}, \mathbb{Y} \in \tau$, then $\mathbb{H} \cup \mathbb{D}=\mathbb{X} \cup \mathbb{Y}$.

So, $\mathbb{H} \subseteq \mathbb{H} \cup \mathbb{D} \rightarrow \mathbb{H} \subseteq \mathbb{X} \cap \mathbb{Y} \rightarrow \mathbb{H} \subseteq \mathbb{X}$ or $\mathbb{H} \subseteq \mathbb{Y}$ (because \mathbb{H} isconnt.). Also $\mathbb{D} \subseteq \mathbb{H} \cup \mathbb{D} \rightarrow \mathbb{D} \subseteq \mathbb{X} \cap \mathbb{Y} \rightarrow \mathbb{D} \subseteq \mathbb{X}$ or $\mathbb{D} \subseteq \mathbb{Y}$ (because \mathbb{D} is connt.).

Now, either $\mathbb{H} \subseteq \mathbb{X} \wedge \mathbb{D} \subseteq \mathbb{X} \rightarrow \mathbb{H} \cup \mathbb{D} \subseteq \mathbb{X} \rightarrow \mathbb{Y}=\varnothing$,this is contradiction.
or $\mathbb{H} \subseteq \mathbb{Y} \wedge \mathbb{D} \subseteq \mathbb{Y} \rightarrow \mathbb{H} \cup \mathbb{D} \subseteq \mathbb{Y} \rightarrow \mathbb{X}=\emptyset$, this is contradiction.
or $\mathbb{H} \subseteq \mathbb{Y} \wedge \mathbb{D} \subseteq \mathbb{X} \rightarrow \mathbb{H} \cap \mathbb{D} \subseteq \mathbb{X} \cap \mathbb{Y}=\emptyset \rightarrow \mathbb{X} \cap \mathbb{Y}=\emptyset$, this is contradiction.
or $\mathbb{H} \subseteq \mathbb{X} \wedge \mathbb{D} \subseteq \mathbb{Y} \rightarrow \mathbb{H} \cap \mathbb{D} \subseteq \mathbb{X} \cap \mathbb{Y}=\emptyset \rightarrow \mathbb{X} \cap \mathbb{Y}=\emptyset$,
this is contradiction. Hence $\mathbb{H} \cup \mathbb{D}$ is connt.
And by generalizing the above theorem to any family of connt. sets, we obtain the following theorem.

Proportion

The union of any family of $\operatorname{Connt}_{\mathcal{P}}$ sets have non_ empty intersection connt. set.

Proof.

Let $\left\{\mathcal{M}_{\mathrm{i}}: \mathrm{i} \in \mathbb{N}\right\}$ be non-empty of connt. subset of \mathbb{X} and $\mathrm{U}_{\mathrm{i} \in \wedge} \mathcal{M}_{\mathrm{i}}$ is Dconnt., then $\cup_{i \in \wedge} \mathcal{M}=\mathbb{H} \cup \mathbb{D}$, where \mathbb{H} and \mathbb{D} are separated sets in \mathbb{X}. Since $\bigcap_{i \in \wedge} \mathcal{M}_{i} \neq$ \emptyset, then $\mathrm{x} \in \bigcap_{\mathrm{i} \in \wedge} \mathcal{M}_{\mathrm{i}}$.

Since $\mathrm{x} \in \mathrm{U}_{\mathrm{i} \in \wedge} \mathcal{M}_{\mathrm{i}}$ either $\mathrm{x} \in \mathbb{H}$ or $\mathrm{x} \in \mathbb{D}$, if $\quad \mathrm{x} \in \mathbb{H} \wedge \mathrm{x} \in \mathcal{M}_{\mathrm{i}}, \forall \mathrm{i} \in \mathbb{N}$. By (Remarks $\mathcal{M}_{\mathrm{i}} \subseteq \mathbb{H}$ or $\mathcal{M}_{\mathrm{i}} \subseteq \mathbb{D}$. Since $\mathbb{H} \cap \mathbb{D}=\emptyset$.
Then $\mathrm{U}_{\mathrm{i} \in \wedge} \mathcal{M}_{\mathrm{i}} \subseteq \mathcal{H}$ (because $\mathcal{M}_{\mathrm{i}} \subseteq \mathbb{H}$ for all $\mathrm{i} \in \mathbb{Z}$), that leads to \mathbb{D} is empty, this is a contradiction.

By similar discussion \mathbb{H} is also empty and this is a contradiction.
Then $\mathrm{U}_{\mathrm{i} \in \wedge} \mathcal{M}_{\mathrm{i}}$, is connt. set.

