

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : بعض خواص الترابط في الفضاء التبولوجية مدرس المادة : أ .د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq

Proposition (26)

If E is a Connt subset of M, then cl(E) is Connt.

Proof.

Let *E* be *Connt* subset of a (M, τ) and suppose that cl(E) is *Dconnt*, it follows that there exist *A* and *B* are non_ empty sets $\ni cl(A) \cap B = \emptyset = cl(B) \cap$ *A*.So, $cl(E) = A \cup B$, then $E \subseteq cl(E) = A \cup B$, Since *E* is a *Connt* thus $E \subseteq A \cup$ *B* and $E \subseteq A$ or $E \subseteq B$. If, $E \subseteq A$, $cl(E) \subseteq cl(A)$ then $cl(E) \cap B \subseteq cl(A) \cap$ $B = \emptyset$ --(1). Since $cl(E) = A \cup B \rightarrow B \subseteq cl(E) \rightarrow cl(E) \cap B = B \rightarrow B = \emptyset$.For $cl(E) \cap B = \emptyset$ (from(1)) and *H* in $M \ni cl(E) = H \cup D$.Since $E = (H \cap E) \cup$ $(D \cap E)$ and $cl(H \cap E) \subseteq cl(H)$ and $cl(D \cap E) \subseteq cl(D)$ and $H \cap D = \emptyset$, then $cl(D \cap E) \cap H = \emptyset$, we get $cl(D \cap E) \cap (H \cap E) = \emptyset$.

Similarly, $cl(H \cap E) \cap (D \cap E) = \emptyset$. Therefore, E is *Connt*this contradiction for $B \neq \emptyset$. Similarly, $E \subseteq B \rightarrow A = \emptyset$. Hence, if E is *Connt*, then cl(E) is *Connt*.

Proposition(27)

Let $f: (M, \tau) \to (N, \sigma)$ be a surjection *Cont.* map. If (M, τ) is *Connt*, then (N, σ) is *Connt* too.

Proof.

Let (N, σ) be not *Connt* and $M = H \cap D$, where H, D are separated non_empty open sets in (N, σ) Thus $M = f^{-1}(H) \cup f^{-1}(D)$

where $f^{-1}(H)$, $f^{-1}(D)$ are *Sepa* non_ empty *open* sets in *N* this is contradiction, then (N, σ) is *Connt*.

Remarks (2.1.11)

- 1. X is connt. set, iff it is not the union of two non-empty separated sets.
- 2. If X is the union of two disjoint non_ empty \mathcal{P}_{-} open sub sets then X is DDconnt.
- 3. If E is connt. set of X and \mathbb{H} , \mathbb{D} are Separ_P sets of X with $E \subseteq \mathbb{H} \cup \mathbb{D}$, then either $E \subseteq \mathbb{H}$ or $E \subseteq \mathbb{D}$.
- 4. If E subset of X is a connt. Then $cl_{\mathcal{P}}(E)$ is connt.

We know that if \mathbb{H} and \mathbb{D} are connt. sets, then $\mathbb{H} \cup \mathbb{D}$ is Dconnt. set, but by adding some condition we can prove that connt. sets by the following theorem.

Theorem (2.1.12)

If \mathbb{H} and \mathbb{D} is connt. sets, such that $\mathbb{H} \cap \mathbb{D} \neq \emptyset$. Then $\mathbb{H} \cup \mathbb{D}$

is connt. set.

Proof.

Suppose that $\mathbb{H}, \mathbb{D} \subseteq \mathbb{X} \ni \mathbb{H} \cap \mathbb{D} \neq \emptyset$ and \mathbb{H}, \mathbb{D} are connt. and $\mathbb{H} \cup \mathbb{D}$ is connt. If \mathbb{X}, \mathbb{Y} are two disjoint non_ empty open sets and $\mathbb{X}, \mathbb{Y} \in \tau$, then $\mathbb{H} \cup \mathbb{D} = \mathbb{X} \cup \mathbb{Y}$. So, $\mathbb{H} \subseteq \mathbb{H} \cup \mathbb{D} \to \mathbb{H} \subseteq \mathbb{X} \cap \mathbb{Y} \to \mathbb{H} \subseteq \mathbb{X}$ or $\mathbb{H} \subseteq \mathbb{Y}$ (because \mathbb{H} isconnt.). Also $\mathbb{D} \subseteq \mathbb{H} \cup \mathbb{D} \to \mathbb{D} \subseteq \mathbb{X} \cap \mathbb{Y} \to \mathbb{D} \subseteq \mathbb{X}$ or $\mathbb{D} \subseteq \mathbb{Y}$ (because \mathbb{D} is connt.). Now, either $\mathbb{H} \subseteq \mathbb{X} \land \mathbb{D} \subseteq \mathbb{X} \to \mathbb{H} \cup \mathbb{D} \subseteq \mathbb{X} \to \mathbb{Y} = \emptyset$, this is contradiction. or $\mathbb{H} \subseteq \mathbb{Y} \land \mathbb{D} \subseteq \mathbb{Y} \to \mathbb{H} \cup \mathbb{D} \subseteq \mathbb{Y} \to \mathbb{X} = \emptyset$, this is contradiction. or $\mathbb{H} \subseteq \mathbb{Y} \land \mathbb{D} \subseteq \mathbb{X} \to \mathbb{H} \cap \mathbb{D} \subseteq \mathbb{X} \cap \mathbb{Y} = \emptyset \to \mathbb{X} \cap \mathbb{Y} = \emptyset$, this is contradiction. or $\mathbb{H} \subseteq \mathbb{X} \land \mathbb{D} \subseteq \mathbb{Y} \to \mathbb{H} \cap \mathbb{D} \subseteq \mathbb{X} \cap \mathbb{Y} = \emptyset \to \mathbb{X} \cap \mathbb{Y} = \emptyset$, this is contradiction.

And by generalizing the above theorem to any family of connt.sets, we obtain the following theorem.

Proportion

The union of any family of $Connt_{\mathcal{P}}$ sets have non_ empty intersection connt. set.

Proof.

Let { $\mathcal{M}_i : i \in \mathbb{N}$ } be non-empty of connt. subset of X and $\bigcup_{i \in \Lambda} \mathcal{M}_i$ is Dconnt., then $\bigcup_{i \in \Lambda} \mathcal{M} = \mathbb{H} \cup \mathbb{D}$, where \mathbb{H} and \mathbb{D} are separated sets in X. Since $\bigcap_{i \in \Lambda} \mathcal{M}_i \neq \emptyset$, then $x \in \bigcap_{i \in \Lambda} \mathcal{M}_i$.

Since $x \in \bigcup_{i \in \Lambda} \mathcal{M}_i$ either $x \in \mathbb{H}$ or $x \in \mathbb{D}$, if $x \in \mathbb{H} \land x \in \mathcal{M}_i, \forall i \in \mathbb{N}$. By (Remarks $\mathcal{M}_i \subseteq \mathbb{H}$ or $\mathcal{M}_i \subseteq \mathbb{D}$. Since $\mathbb{H} \cap \mathbb{D} = \emptyset$.

Then $\bigcup_{i \in \Lambda} \mathcal{M}_i \subseteq \mathcal{H}$ (because $\mathcal{M}_i \subseteq \mathbb{H}$ for all $i \in \mathbb{Z}$), that leads to \mathbb{D} is

empty, this is a contradiction.

By similar discussion \mathbb{H} is also empty and this is a contradiction.

Then $\bigcup_{i \in \Lambda} \mathcal{M}_{i}$ is connt. set.