

جامعة تكريت - كلية التربية للبـنات ــقسم الرياضيـات
المرحلة : الرابعة

المـادة: التبولوجيا العامـة
عنوان المحاضرة : بديهيات الفصل في الفضـاء التبولوجية
مدرس المـادة : أ .د. رنـا بـهجت يـاسبـن

Zain 2016@ tu.edu.iq : الايميل الجامعي

Definition (28)

Topological space (M, τ) is T_{0}-axiom of separation briefly ($T_{0_{-}}$space) for each a distinct points $v, u \in M$,if there exists a open set containing one of them but not the other.

Definitions (29)

1. Topological space (M, τ) is said to satisfy the T_{1} axiom of separation briefly ($T_{1 _}$space) for each a distinct points $v, u \in M$,if there exists two open sets containing one of the two points but not the other.
2. Topological space (M, τ) is said to satisfy the T_{2} axiom of separation briefly (T_{2} space) for each a distinct points $v, u \in M$,if there exists H, D are two disjoint open sets such that $v \in H, u \in D$.

Theorem (30)

Every $T_{i _}$space is T_{i-1} space, where $i=1,2$.

Proof.

We prove that the theorem for $i=1$
Let (M, τ) be a $T_{1 _ \text {space }}$ if for v, u of M, there exist two disjoint open sets H, D containing one of the two points, but not the other. Furthermore it there exist H is open set, such that $v \in H$ and $u \notin H$. Then (M, τ) is $T_{0 _}$space.

We prove that the theorem for $i=2$
Suppose that (M, τ) is T_{2-} space, if for v, u of M, then there exists two disjoint open sets containing one of the two points, but not the other. So there exists H, D
are open sets, such that $v \in H$ and $u \notin H$ or $u \in D$ and $v \notin D$. Then (M, τ) is $T_{1 _}$space.

Theorem (31)

The space (M, τ) is T_{0-} space if and only if for any distinct points v, u of M such that $\operatorname{cl}\{v\} \neq \operatorname{cl}\{u\}$.

Proof.

For $v, u \in M, v \neq u$ with $\operatorname{cl}\{v\} \neq \operatorname{cl}\{u\}$. Suppose that $w \in M$ such that $w \in$ $\operatorname{cl}\{v\}, w \notin \operatorname{cl}\{u\}$. Therefore $v \notin \operatorname{cl}\{u\}$. If $v \in \operatorname{cl}\{u\}$ then $\{v\} \subseteq \operatorname{cl}\{u\} \rightarrow \operatorname{cl}\{v\} \subseteq$ $\operatorname{cl}\{u\}$. Thus $w \in \operatorname{cl}\{v\} \wedge w \in \operatorname{cl}\{u\}$ this is contradiction. Hence $M-\operatorname{cl}\{u\}$ is open set containing v, but not u. Then (M, τ) is $T_{0}^{N P}{ }^{\prime}$ space.

Conversely,
Suppose that $v, u \in M, v \neq u$, since (M, τ) is a $T_{0_{-}}$space and
$X \in O(M)$ such that $v \in X \wedge u \notin X$, therefore $\operatorname{cl}\{u\} \subseteq M-X$. Hence $v \in M-X$ as $v \notin \operatorname{cl}\{v\} \wedge u \in \operatorname{cl}\{u\}$ and $\operatorname{cl}\{v\} \neq \operatorname{cl}\{u\}$

Proposition (32)

The surjective Con $_{N_{P}}$-image of $T_{0 _}$space is $T_{0 _ \text {_space }}$.
Proof.
Suppose that $f:(M, \tau) \rightarrow(N, \sigma)$ and $d, e \in M$, if f is onto then $\exists c, z$ such that $c=f^{-1}(d) \wedge z=f^{-1}(e)$. Since M is a $T_{0_{-} \text {space, then }}$ there exist open set containing one of the two points c and z but not the other, for $c \in H \wedge z \notin H$ or S such that $z \in S \wedge c \notin S$, so
$f^{-1}(c) \in f(H)=H$ or $f^{-1}(z) \in f(S)=S$, then $d \in H \wedge e \notin H$ or $e \in S \wedge d \notin S$. Then (M, τ) is a $T_{0 _}$space.

Remark (33)

The following figure. Explains the relations between space T_{i} space, where $\mathrm{i}=0,1,2$.

$$
\mathrm{T}_{2_{-}} \text {space } \rightarrow \mathrm{T}_{1_{-}} \text {space } \rightarrow \mathrm{T}_{0_{-}} \text {space }
$$

By adding some conditions to the function, we get the following theorems.
Theorem
Let $f:(M, \tau) \rightarrow(N, \sigma)$ be a bijective open map and \mathbb{X} is T_{i} spaces, then \mathbb{Y} is T_{i} spaces, where $\mathrm{i}=0,1,2$.

Proof. We prove the case i=2.
Let v_{2}, u_{2} be two points in \mathbb{Y} and $v_{2} \neq u_{2}$. Since f is bijective, then $\exists v_{1}, u_{1} \in$ \mathbb{X} and $f\left(v_{1}\right)=v_{2}, f\left(u_{1}\right)=u_{2}$. But , \mathbb{X} is T_{2-} spaces, then \exists two disjoint open sets $\mathbb{H}, \mathbb{D} \in \mathbb{X}$, whenerver $v_{1} \in \mathbb{H}, u_{1} \in \mathbb{D}$. Then $\mathfrak{f}(\mathbb{H}), \mathfrak{f}(\mathbb{D})$ are open sets in \mathbb{Y}, we get $v_{2} \in \mathfrak{f}(\mathbb{H}), u_{2} \in \mathfrak{f}(\mathbb{D})$ and $\mathfrak{f}(\mathbb{H}) \cap \mathfrak{f}(\mathbb{D})=\varnothing$. Hence \mathbb{Y} is T_{2} - space.

Theorem

If $f:(M, \tau) \rightarrow(N, \sigma)$ is injectivecont. map and \mathbb{Y} is $\mathrm{T}_{\mathrm{i}_{-}}$spaces, then \mathbb{X} is $\mathrm{T}_{\mathrm{i}_{-}}$spaces, where $\mathrm{i}=0,1,2$.

Proof.

We prove the case $\mathrm{i}=2$.
Suppose that v, u of \mathbb{X} and $v \neq u$. Since \mathfrak{f} is one to one, then $\mathrm{f}(v) \neq \mathrm{f}(u)$ in \mathbb{Y}. But \mathbb{Y} is $\mathrm{T}_{2-\text { space, }}$ then \exists two disjoint open sets $\mathbb{H}, \mathbb{D} \in \mathbb{Y}$, whenever, $f(v) \in$ $\mathbb{H}, \mathfrak{f}(u) \in \mathbb{D}$. Then $\mathfrak{f}^{-1}(\mathbb{H}), \mathfrak{f}^{-1}(\mathbb{D})$ are open, we get $v \in \mathfrak{f}^{-1}(\mathbb{H}), u \in \mathfrak{f}^{-1}(\mathbb{D})$ and $\mathfrak{f}^{-1}(\mathbb{H}) \cap \mathfrak{f}^{-1}(\mathbb{D})=\emptyset$. Then \mathbb{X} is T_{2} space.

Theorem

Let $f:(M, \tau) \rightarrow(N, \sigma)$ be injective irresolute map and \mathbb{Y} is $\mathrm{T}_{\mathrm{i}_{-}}$spaces, then \mathbb{X}, is $\mathrm{T}_{\mathrm{i}_{-}}$spaces, where $\mathrm{i}=0,1,2$.

Proof.

We prove the case $\mathrm{i}=0$.
Let v, u in \mathbb{X} and $v \neq u$. Since \mathfrak{f} is one to one $\mathfrak{f}(v) \neq \mathfrak{f}(u)$ in \mathbb{Y}, \mathbb{Y} is T_{0} space, then \exists an open set $\mathbb{H} \in \mathbb{Y}$, whenever $\mathfrak{f}(v) \in \mathbb{H}, \mathfrak{f}(u) \notin \mathbb{H}$.

Then $\mathfrak{f}^{-1}(\mathbb{H})$ is semi set (because \mathfrak{f} is irresolute and every open is sem. set), we get $v \in \mathfrak{f}^{-1}(\mathbb{H}), u \notin \mathfrak{f}^{-1}(\mathbb{H})$.
Then \mathbb{X} is T_{0} - space.

