

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : بديهيات الفصل في الفضاء التبولوجية مدرس المادة : أ .د. رنا بهجت ياسين الايميل الجامعي : Zain 2016 @ tu.edu.iq

Definition (28)

Topological space (M, τ) is T_0 -axiom of separation briefly (T_0_space) for each a distinct points $v, u \in M$, if there exists a open set containing one of them but not the other.

Definitions (29)

- Topological space (M, τ) is said to satisfy the T₁ axiom of separation briefly (T_{1−} space) for each a distinct points v, u ∈ M, if there exists two open sets containing one of the two points but not the other.
- Topological space (M, τ) is said to satisfy the T₂ axiom of separation briefly (T₂_ space) for each a distinct points v, u ∈ M, if there exists H, D are two disjoint open sets such that v ∈ H, u ∈ D.

Theorem (30)

Every T_i _space is T_{i-1} _space, where i = 1,2.

Proof.

We prove that the theorem for i = 1

Let (M, τ) be a T_1 -space if for v, u of M, there exist two disjoint *open* sets H, D containing one of the two points, but not the other. Furthermore it there exist H is *open* set, such that $v \in H$ and $u \notin H$. Then (M, τ) is T_0 -space.

We prove that the theorem for i = 2

Suppose that (M,τ) is T_2 _space, if for v, u of M, then there exists two disjoint *open* sets containing one of the two points, but not the other. So there exists H,D

are open sets, such that $v \in H$ and $u \notin H$ or $u \in D$ and $v \notin D$. Then (M, τ) is T_1 _space.

Theorem (31)

The space (M, τ) is T_0 _space if and only if for any distinct points v, u of M such that $cl\{v\} \neq cl\{u\}$.

Proof.

For $v, u \in M, v \neq u$ with $cl\{v\} \neq cl\{u\}$. Suppose that $w \in M$ such that $w \in cl\{v\}, w \notin cl\{u\}$. Therefore $v \notin cl\{u\}$. If $v \in cl\{u\}$ then $\{v\} \subseteq cl\{u\} \rightarrow cl\{v\} \subseteq cl\{u\}$. Thus $w \in cl\{v\} \land w \in cl\{u\}$ this is contradiction. Hence $M - cl\{u\}$ is *open* set containing v, but not u. Then (M, τ) is T_0^{NP} _space.

Conversely,

Suppose that $v, u \in M$, $v \neq u$, since (M, τ) is a T_0 -space and

 $X \in O(M)$ such that $v \in X \land u \notin X$, therefore $cl\{u\} \subseteq M - X$. Hence $v \in M - X$ as $v \notin cl\{v\} \land u \in cl\{u\}$ and $cl\{v\} \neq cl\{u\} \blacksquare$

Proposition (32)

The surjective Con_{N_P} -image of T_0 _space is T_0 _space.

Proof.

Suppose that $f:(M,\tau) \to (N,\sigma)$ and $d, e \in M$, if f is onto then $\exists c, z$ such that $c = f^{-1}(d) \land z = f^{-1}(e)$. Since M is a T_0 -space, then there exist open set containing one of the two points c and z but not the other, for $c \in H \land z \notin H$ or S such that $z \in S \land c \notin S$, so

 $f^{-1}(c) \in f(H) = H \text{ or } f^{-1}(z) \in f(S) = S$, then $d \in H \land e \notin H$ or $e \in S \land d \notin S$. Then (M, τ) is a T_0 -space.

Remark (33)

The following figure. Explains the relations between space T_i space, where i=0,1,2.

T_2 _space $\rightarrow T_1$ _space $\rightarrow T_0$ _space

By adding some conditions to the function, we get the following theorems.

Theorem

Let $f:(M,\tau) \to (N,\sigma)$ be a bijective open map and X is T_{i-} spaces, then Y is T_{i-} spaces, where i =0,1,2.

Proof. We prove the case i = 2.

Let v_2, u_2 be two points in \mathbb{Y} and $v_2 \neq u_2$. Since \mathfrak{f} is bijective, then $\exists v_1, u_1 \in \mathbb{X}$ and $\mathfrak{f}(v_1) = v_2, \mathfrak{f}(u_1) = u_2$. But, \mathbb{X} is \mathbb{T}_{2-} spaces, then \exists two disjoint open sets $\mathbb{H}, \mathbb{D} \in \mathbb{X}$, whenerver $v_1 \in \mathbb{H}, u_1 \in \mathbb{D}$. Then $\mathfrak{f}(\mathbb{H}), \mathfrak{f}(\mathbb{D})$ are open sets in \mathbb{Y} , we get $v_2 \in \mathfrak{f}(\mathbb{H}), u_2 \in \mathfrak{f}(\mathbb{D})$ and $\mathfrak{f}(\mathbb{H}) \cap \mathfrak{f}(\mathbb{D}) = \emptyset$. Hence \mathbb{Y} is \mathbb{T}_2 -space.

Theorem

If $f: (M, \tau) \to (N, \sigma)$ is injective cont. map and \mathbb{Y} is T_i _spaces, then \mathbb{X} is T_i _spaces, where i=0,1,2.

Proof.

We prove the case i = 2.

Suppose that v, u of \mathbb{X} and $v \neq u$. Since \mathfrak{f} is one to one, then $\mathfrak{f}(v) \neq \mathfrak{f}(u)$ in \mathbb{Y} . But \mathbb{Y} is T_2 -space, then \exists two disjoint open sets $\mathbb{H}, \mathbb{D} \in \mathbb{Y}$, whenever, $\mathfrak{f}(v) \in \mathbb{H}, \mathfrak{f}(u) \in \mathbb{D}$. Then $\mathfrak{f}^{-1}(\mathbb{H}), \mathfrak{f}^{-1}(\mathbb{D})$ are open, we get $v \in \mathfrak{f}^{-1}(\mathbb{H}), u \in \mathfrak{f}^{-1}(\mathbb{D})$ and $\mathfrak{f}^{-1}(\mathbb{H}) \cap \mathfrak{f}^{-1}(\mathbb{D}) = \emptyset$. Then \mathbb{X} is T_2 -space.

Theorem

Let $f: (M, \tau) \to (N, \sigma)$ be injective irresolute map and \mathbb{Y} is T_{i-} spaces,

then X, is T_{i-} spaces, where i=0,1,2.

Proof.

We prove the case i=0.

Let v, u in \mathbb{X} and $v \neq u$. Since f is one to one, $f(v) \neq f(u)$ in \mathbb{Y} , \mathbb{Y} is T_0 _ space, then \exists an open set $\mathbb{H} \in \mathbb{Y}$, whenever $f(v) \in \mathbb{H}, f(u) \notin \mathbb{H}$.

Then $f^{-1}(\mathbb{H})$ is semi-set (because f is irresolute and every open is sem. set), we get $v \in f^{-1}(\mathbb{H})$, $u \notin f^{-1}(\mathbb{H})$.

Then X is T_0 - space.