

جامعة تكريت – كلية التربية للبنات قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : دوال المفتوحة والمغلقة في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq In this section, we review the definition of open and closed functions and propositions about this subject.

Definitions (9)

The function $f: (M, \tau) \to (N, \sigma)$ is called :

- 1. open function (OM) if, $f(A) \in O(M, X)$, for each $A \in (M, \tau)$.
- 2. closed function (CM) if, $f(B) \in C(M, X)$, for each B is closed set.

Proposition (10)

A surjective map $f: (M, \tau) \to (N, \sigma)$ is OM if and only if f is CM.

Proof.

Let f be CM map and $A \subseteq M, A \in (M, \tau)$ thus A^c is a closed set. Since f is a CM, then $f(A^c)$ is a closed set in $(\check{M}, I(\check{X}))$. Therefore $f(A^c)^c$ is a open set, so $f(A^c)^c = f(A)$ (because f be surjective). Hence f(A) is a open set in (M, τ)

So f is OM. In similar way we can prove that (2)

Proposition (11)

The function $f: (M, \tau) \to (N, \sigma)$ is a OM if and only if $f(int(A)) \subseteq int(f(A))$ for each $A \subseteq M$.

Proof.

Let *f* be open function then for any $H \in I \to f(H) \in (M, \tau)$ and $A \subseteq M$, since $int(A) \subseteq A \to f(int A) \subseteq f(A) \to$ $int(f(int A)) \subseteq int(f(A))$, then $int A \in I \to f(int A) \in I(X)$. For *f* is open and *int A* is open set, hence f(int A) = int (f(int A))[because $B^{\circ} = B \rightarrow \forall B \text{ is open}$] Then $f(int A) \subseteq int (f(A))$.

Conversely,

For each $A \subseteq M$ which that $f(int A) \subseteq int (f(A))$, if $H \in I$ be arbitrary so that int $(H) = H \rightarrow f(int H) = f(H)$ But $f(int H) \subseteq int f(H)$, combining these two results, $f(H) \subseteq int f(H)$ also int $f(H) \subseteq f(H)$ then int f(H) = f(H), thus $H \in$ $I \rightarrow f(H) \in (M, \tau)$ Then f is OM.

Proposition(12)

Let $f: (M, \tau) \to (N, \sigma)$ be a CM function if and only if $cl(f(A)) \subseteq f(cl(A))$, for each $A \subseteq M$.

Proof.

Suppose that $f \in CM$, then $f(cl_{N_P}(A))$ is a closed set in (M, τ) for each $A \subseteq M$. Since cl(A) is a closed set in (M, τ) so $A \subseteq cl(A) \rightarrow f(A) \subseteq f(cl(A))$. Thus f(cl(A)) is a closed set containing f(A), we get $cl(f(A)) \subseteq f(cl(A))$.

Conversely,

Let $cl(f(A)) \subseteq f(cl(A))$, for each $A \subseteq M$ and f be a closed set in (M, τ) , then cl(A) = A and cl f(A) = f(A), thus f(A) is a closed set in (M, τ) Hence f is a CM.

Propositions (13)

Let $f: (M, \tau) \to (N, \sigma)$ be a bijective function, then:

- 1. f is a OM if and only if f^{-1} is a *Con*.
- 2. f is a CM if and only if f^{-1} is a Con.

Proof.

Let f be a OM and $A \subseteq M$, then f(A) is open set in $(M,\tau), (f^{-1})^{-1}(A) = f(A)$ is open set in (M,τ) . Then f^{-1} is a Con.

Conversely,

For each $A \subseteq M$, since f is bijective then $(f^{-1})^{-1}(A) = f(A)$. Let A is open set in (M, I(X)), we get $(f^{-1})^{-1}(A)$ is an open set in (M, τ) (because f^{-1} is a *Con*) and since f be bijective, then f(A) is a open set in (M, τ) Hence f is a OM. In similar way we can prove that (2).

<u>Remark</u>

Let (M, τ) is a T₂_space, If (N, σ) is a compact subspace of (M, τ) then (N, σ) is closed.

Proposition

If A is compact subset of a T_2 –space (M, τ) , then A is closed set

Proof.

Suppose that \mathbb{A}^{c} is closed set and $u \in \mathbb{A}^{c}$, since \mathbb{A} is a compact subset of a T_{2} -space, if $u \notin \mathbb{A}$, then $\exists G \in (M, \tau)$ such that $u \in G \subseteq \mathbb{A}^{c}$.

Therefore $\mathbb{A}^c = \bigcup \{ G: u \in \mathbb{A}^c \}$, thus \mathbb{A}^c is closed set, as it is the union of closed sets. Then \mathbb{A} is closed set

Proposition

The image of a $\mathcal{N}_{\mathcal{P}}$ -compact space under a cont. map is compact.

Proof.

If $((M, \tau)$ is compact to any \mathcal{N}_{-} topological space (N, σ) Let $f: (M, \tau) \to (N, \sigma)$ be cont. map and $\{G_i: i \in \Lambda\}$ be an open set cover of (N, σ)

Then $\{f^{-1}(G_i): i \in \Lambda\}$ is open set cover of (M, τ) and has a finite sub cover $\{f^{-1}(G_i): i = 1, 2, 3, ..., n\}$ [because f is cont. and \mathcal{M} is compact].

Whenever $\mathcal{M} = \{ \cup f^{-1}(G_i) : i \in \Lambda \} \rightarrow \{ \cup (G_i) : i \in \Lambda \} = f(\mathcal{M}) = \breve{\mathcal{M}}.$

Thus $\{G_1, G_2, G_3, ..., G_n\}$ is finite sub cover of $\{G_i : i \in \Lambda\}$ for (N, σ) Hence (N, σ) is compact