

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : مكافئات الاستمر ارية في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq

In the following Propositions, we characterize continuous functions in terms of inverse image of *closuer* and interior.

Proposition (5)

A map $f: (M, \tau) \to (N, \sigma)$ is Con iff $\mathfrak{f}(\mathfrak{cl}(\mathbb{A})) \subseteq \mathfrak{cl}(\mathfrak{f}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathcal{M}$.

Proof.

 $\forall \mathbb{A} \subseteq \mathcal{M} \text{ and } \mathfrak{f}: \mathcal{M} \to \mathbb{N} \text{ is a Con. map, so } \mathfrak{f}(\mathbb{A}) \subseteq \mathbb{N}.$ Then

cl ($\mathfrak{f}(\mathbb{A})$) is closed in N. we get $\mathfrak{f}^{-1}(cl(\mathfrak{f}(\mathbb{A})))$

is closed in \mathcal{M} .

Since $f(\mathbb{A}) \subseteq cl(f(\mathbb{A})) \to \mathbb{A} \subseteq f^{-1}(cl (f(\mathbb{A})))$ and

 $\operatorname{cl}(\mathbb{A}) \subseteq \operatorname{cl}(\mathfrak{f}^{-1}(\operatorname{cl}(\mathfrak{f}(\mathbb{A}))) = \mathfrak{f}^{-1}(\operatorname{cl}(f(\mathbb{A}))).$

Then $\mathfrak{f}(\mathfrak{cl}(\mathbb{A})) \subseteq \mathfrak{cl}(\mathfrak{f}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathcal{M}$.

Conversely,

 $\forall \mathbb{A} \subseteq \mathcal{M}$ which that, $\mathfrak{f}(cl(\mathbb{A})) \subseteq cl(\mathfrak{f}(\mathbb{A}))$. If \mathbb{D} is cl in N.

By hypothesis $f(cl(f^{-1}(\mathbb{D}))) \subseteq cl(f(f^{-1}(\mathbb{D})))(cl(\mathbb{D}) = \mathbb{D})$

which implies that $\operatorname{cl}(\mathfrak{f}^{-1}(\mathbb{D})) \subseteq \mathbb{D}$.

But always
$$f^{-1}(\mathbb{D}) \subseteq cl(f^{-1}(\mathbb{D}))$$
, so that $cl(f^{-1}(\mathbb{D})) = f^{-1}(\mathbb{D})$,

we get $f^{-1}(\mathbb{D})$ is *closed* in N. Then f is Con. map

In the following Propositions, we characterize Con. maps in terms of inverse image of CL and int.

Proposition (6)

A map $f:(M,\tau) \to (N,\sigma)$ is a *con* iff $cl(f^{-1}(\mathbb{A})) \subseteq f^{-1}(cl(\mathbb{A}))$, for each $\mathbb{A} \subseteq \mathbb{N}$. **Proof.**

If f is a $\operatorname{Con}_{\mathcal{N}_{\mathcal{P}}}$ and $\mathbb{A} \subseteq \operatorname{cl}_{\mathcal{N}_{\mathcal{P}}}(\mathbb{A}) \subseteq \mathbb{N}$, then $f^{-1}(\operatorname{cl}(\mathbb{A})$ is *closed* in \mathcal{M} . So we get $\operatorname{cl}_{\mathcal{N}_{\mathcal{P}}}(f^{-1}(\operatorname{cl}(\mathbb{A}))) = f^{-1}(\operatorname{cl}(\mathbb{A}))$, since $\mathbb{A} \subseteq \operatorname{cl}(\mathbb{A})$, $f^{-1}(\mathbb{A}) \subseteq (f^{-1}(\operatorname{cl}(\mathbb{A})))$. Then $\operatorname{cl}(f^{-1}(\mathbb{A})) \subseteq \operatorname{cl}(f^{-1}(\operatorname{cl}(\mathbb{A}))) = f^{-1}(\operatorname{cl}(\mathbb{A}))$. Hence $\operatorname{cl}(f^{-1}(\mathbb{A})) \subseteq f^{-1}(\operatorname{cl}(\mathbb{A}))$.

Conversely,

Suppose that cl $(f^{-1}(\mathbb{A})) \subseteq f^{-1}(cl_{\mathcal{N}_{\mathcal{P}}}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathbb{N}$ and \mathbb{A} is *closed* in N, such that $\mathbb{A} = cl(\mathbb{A})$,

so
$$\operatorname{cl}(\mathfrak{f}^{-1}(\mathbb{A})) \subseteq \mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A})) = \mathfrak{f}^{-1}(\mathbb{A}) \to \operatorname{cl}(\mathfrak{f}^{-1}(\mathbb{A})) \subseteq \mathfrak{f}^{-1}(\mathbb{A}).$$

But $f^{-1}(\mathbb{A}) \subseteq cl(f^{-1}(\mathbb{A}))$, we get $f^{-1}(\mathbb{A}) = cl(f^{-1}(\mathbb{A}))$, that is $f^{-1}((\mathbb{A})$ is *closed* in \mathcal{M} , for each \mathbb{A} is *closed* in N. Then f is a Con.

Proposition (7)

A map $f: (M, \tau) \to (N, \sigma)$ is Con. iff $f^{-1}(int(\mathbb{A})) \subseteq int(f^{-1}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathbb{N}$.

Proof.

If $A \subseteq \text{Nand } \mathfrak{f}$ is a $\text{Con}_{\mathcal{N}_{\mathcal{P}}}$, then int (A)is *closed* in N, so we get $\mathfrak{f}^{-1}(\text{int}(A))$ is *closed* in \mathcal{M} , that is $\mathfrak{f}^{-1}(\text{int}(A)) = \text{int}[\mathfrak{f}^{-1}(\text{int}(A)] \subseteq (\mathfrak{f}^{-1}(A))$ (because int (A) \subseteq A). Hence $\mathfrak{f}^{-1}(\text{int}(A)) \subseteq \text{int}(\mathfrak{f}^{-1}(A))$.

Conversely,

Suppose $f^{-1}(int(\mathbb{A})) \subseteq int(f^{-1}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathbb{N}$ and \mathbb{A} is *closed* in \mathbb{N} such that $\mathbb{A} = int(\mathbb{A})$ therefore, $f^{-1}(\mathbb{A}) \subseteq int(f^{-1}(\mathbb{A}))$. But $int(f^{-1}(\mathbb{A})) \subseteq f^{-1}(\mathbb{A})$, so $f^{-1}(\mathbb{A}) = int(f^{-1}(\mathbb{A}))$. Thus $f^{-1}(\mathbb{A})$ is *closed* in \mathcal{M} , for each \mathbb{A} is *closed* in \mathcal{M} . Then f is a Con In the following Proposition, we characterize Conmaps in terms of basis elements.

Proposition (8)

Let $(M, \tau), (N, \sigma)$ and $(\overline{M}, I(\overline{X}))$ are three topological spaces. If $f: (M, \tau) \to (N, \sigma)$ and $g: (N, \sigma) \to (\overline{M}, I(\overline{X}))$ are *Con* functions, then $gof: (M, \tau) \to (\overline{M}, I(\overline{X}))$ is *Con*.

Proof.

Suppose that *H* is open set in $(\overline{M}, I(\overline{X}))$. Since g is *Con*, whenever $g^{-1}(H)$ is open set in (N, σ) . Now, $(gof)^{-1}H = f^{-1}(g^{-1}(H))$. So $f^{-1}(H)$ is *open* set in (M, I(X)) because $g^{-1}(H)$ is *open* set in (N, σ) Since *f* is con. Function, then $gof : (M, \tau) \to (\overline{M}, I(\overline{X}))$ is *Con*

The study present the definition and characterization of continuous map in terms of inverse image of closed.

Theorem(8)

Let *W* be *closed* set in (N, σ) and let $f: (M, \tau) \to (N, \sigma)$

is *Con* map if and only if $f^{-1}(W)$ is *closed* set in *M*, for each closed set *W* in (N, σ) .

Proof.

Suppose that $f: (M, \tau) \to (N, \sigma)$ is *Con* and *W* is closed set in (N, σ) , we get W^c is *open* set in (N, σ) .

Since $f^{-1}(W^c) = f^{-1}(W)^c$ is open set in (M, τ) , hence $f^{-1}(W)$ is closed set in (M, τ) whenever W is closed set in (N, σ) .

Conversely,

For each W is closed set in (N, σ) and $f^{-1}(W)$ is *closed* set in (M, τ) . Suppose that (M, τ) is *open* set in (N, σ) .

then W^c is closed set in (N, σ) By hypothesis $f^{-1}(W^c) = f^{-1}(W)^c$ is closed set in (M, τ) .

Hence $f^{-1}(W)$ is open set in (M, τ) . We get f is *con*.