

$$
\begin{aligned}
& \text { جامععة تكريت - كلية التربية للبنات ــقسم الريـاضبات } \\
& \text { المرحلة : الرابعة } \\
& \text { المـادة: التبولوجيا العامـة } \\
& \text { عنوان المحاضرة : مكافئات الاسنمر ارية في الفضـاء اللتبولوجية } \\
& \text { مدرس المـادة : أ .د. رنـا بـهجت بـاسين }
\end{aligned}
$$

Zain 2016@ tu.edu.iq : الايميل الجامعي

In the following Propositions, we characterize continuous functions in terms of inverse image of closuer and interior.

Proposition (5)

A map $f:(M, \tau) \rightarrow(N, \sigma)$ is Con iff $f(\operatorname{cl}(\mathbb{A})) \subseteq \operatorname{cl}(f(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathcal{M}$.

Proof.

$\forall \mathbb{A} \subseteq \mathcal{M}$ and $\mathfrak{f}: \mathcal{M} \rightarrow \mathrm{N}$ is a Con. map, so $\mathfrak{f}(\mathbb{A}) \subseteq \mathrm{N}$.Then
$\operatorname{cl}(\mathfrak{f}(\mathbb{A}))$ isclosed in N. we get $\mathfrak{f}^{-1}(\operatorname{cl}(\mathfrak{f}(\mathbb{A})))$
is closed in \mathcal{M}.
Since $f(\mathbb{A}) \subseteq \operatorname{cl}(f(\mathbb{A})) \rightarrow \mathbb{A} \subseteq \mathfrak{f}^{-1}(\operatorname{cl} \quad(f(\mathbb{A})))$ and
$\operatorname{cl}(\mathbb{A}) \subseteq \operatorname{cl}\left(\mathfrak{f}^{-1}(\operatorname{cl}(f(\mathbb{A})))=\mathfrak{f}^{-1}(\operatorname{cl}(f(\mathbb{A}))\right.$.
Then $\mathfrak{f}(\operatorname{cl}(\mathbb{A})) \subseteq \operatorname{cl}(\mathfrak{f}(\mathbb{A}))$ for each $\mathbb{A} \subseteq \mathcal{M}$.
Conversely,
$\forall \mathbb{A} \subseteq \mathcal{M}$ which that, $f(\operatorname{cl}(\mathbb{A})) \subseteq \operatorname{cl}(f(\mathbb{A}))$. If \mathbb{D} is cl in N .
By hypothesis $\mathfrak{f}\left(\operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{D})\right)\right) \subseteq \operatorname{cl}\left(f\left(\mathfrak{f}^{-1}(\mathbb{D})\right)\right)(\operatorname{cl}(\mathbb{D})=\mathbb{D})$
which implies that $\operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{D})\right) \subseteq \mathbb{D}$.
But always $\mathfrak{f}^{-1}(\mathbb{D}) \subseteq \operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{D})\right)$, so that $\mathrm{cl}\left(\mathfrak{f}^{-1}(\mathbb{D})\right)=\mathfrak{f}^{-1}(\mathbb{D})$,
we get $\mathfrak{f}^{-1}(\mathbb{D})$ is closed in N. Then \mathfrak{f} is Con. map

In the following Propositions, we characterize Con. maps in terms of inverse image of CL and int.

Proposition (6)

A map $f:(M, \tau) \rightarrow(N, \sigma)$ is a con $\operatorname{iff} \operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{A})\right) \subseteq \mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))$, for each $\mathbb{A} \subseteq N$.
Proof.
If \mathfrak{f} is a $\operatorname{Con}_{\mathcal{N}_{\mathcal{P}}}$ and $\mathbb{A} \subseteq \operatorname{cl}_{\mathcal{N}_{\mathcal{P}}}(\mathbb{A}) \subseteq N$, then $\mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A})$ is closed in \mathcal{M}. So we get $\operatorname{cl}_{\mathcal{N}_{\mathcal{P}}}\left(\mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))\right)=\mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A})), \quad$ since $\mathbb{A} \subseteq \operatorname{cl}(\mathbb{A}), \mathfrak{f}^{-1}(\mathbb{A}) \subseteq\left(\mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))\right)$. Then $\operatorname{cl}\left(\mathfrak{f}^{-1}((\mathbb{A}))\right) \subseteq \operatorname{cl} \quad\left(\mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))\right)=\mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))$. Hence $\operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{A})\right) \subseteq \mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))$.

Conversely,
Suppose that $\mathrm{cl}\left(\mathfrak{f}^{-1}(\mathbb{A})\right) \subseteq \mathfrak{f}^{-1}\left(\operatorname{cl}_{\mathcal{N}_{\mathcal{P}}}(\mathbb{A})\right)$ for each $\mathbb{A} \subseteq \mathrm{N}$ and \mathbb{A} is closedinN, such that $\mathbb{A}=\operatorname{cl}(\mathbb{A})$,
$\operatorname{socl}\left(\mathfrak{f}^{-1}(\mathbb{A})\right) \subseteq \mathfrak{f}^{-1}(\operatorname{cl}(\mathbb{A}))=\mathfrak{f}^{-1}(\mathbb{A}) \rightarrow \operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{A})\right) \subseteq \mathfrak{f}^{-1}(\mathbb{A})$.
But $\mathfrak{f}^{-1}(\mathbb{A}) \subseteq \operatorname{cl}\left(f^{-1}(\mathbb{A})\right)$, we get $\mathfrak{f}^{-1}(\mathbb{A})=\operatorname{cl}\left(\mathfrak{f}^{-1}(\mathbb{A})\right)$, that is $\mathfrak{f}^{-1}((\mathbb{A})$ is closed in \mathcal{M}, for each \mathbb{A} is closed in N . Then \mathfrak{f} is a Con.

Proposition (7)

A map $f:(M, \tau) \rightarrow(N, \sigma)$ is Con. $\operatorname{iff} \mathfrak{f}^{-1}(\operatorname{int}(\mathbb{A})) \subseteq \operatorname{int}\left(\mathfrak{f}^{-1}(\mathbb{A})\right)$ for each $\mathbb{A} \subseteq \mathrm{N}$.

Proof.

If $\mathbb{A} \subseteq N a n d \mathfrak{f}$ is a $\operatorname{Con}_{\mathcal{N}_{\mathcal{P}}}$, then int (\mathbb{A}) is closed in N, so we get $\mathfrak{f}^{-1}(\operatorname{int}(\mathbb{A}))$ is closed in \mathcal{M}, that is $\mathfrak{f}^{-1}(\operatorname{int}(\mathbb{A}))=\operatorname{int}\left[\mathfrak{f}^{-1}(\operatorname{int}(\mathbb{A})] \subseteq\left(\mathfrak{f}^{-1}(\mathbb{A})\right)\right.$ (because int $(\mathbb{A}) \subseteq$ $\mathbb{A})$. Hence $\mathfrak{f}^{-1}(\operatorname{int}(\mathbb{A})) \subseteq \operatorname{int}\left(\mathfrak{f}^{-1}(\mathbb{A})\right)$.

Conversely,
Suppose $\mathfrak{f}^{-1}(\operatorname{int}(\mathbb{A})) \subseteq \operatorname{int}\left(\mathfrak{f}^{-1}(\mathbb{A})\right)$ for each $\mathbb{A} \subseteq N$ and \mathbb{A} is closed in N such that $\mathbb{A}=\operatorname{int}(\mathbb{A})$ therefore, $\mathfrak{f}^{-1}(\mathbb{A}) \subseteq \operatorname{int}\left(f^{-1}(\mathbb{A})\right)$.
But int $\left(\mathfrak{f}^{-1}(\mathbb{A})\right) \subseteq \mathfrak{f}^{-1}(\mathbb{A})$, so $\mathfrak{f}^{-1}(\mathbb{A})=\operatorname{int}\left(\mathfrak{f}^{-1}(\mathbb{A})\right)$.
Thus $\mathfrak{f}^{-1}(\mathbb{A})$ is closedin \mathcal{M}, for each \mathbb{A} is closedin \mathcal{M}. Then \mathfrak{f} is a Con $■$

In the following Proposition, we characterize Conmaps in terms of basis elements.

Proposition (8)

Let $(M, \tau),(N, \sigma)$ and $(\bar{M}, I(\bar{X}))$ are three topological spaces. If $f:(M, \tau) \rightarrow$ (N, σ) and $\mathrm{g}:(N, \sigma) \rightarrow(\bar{M}, I(\bar{X}))$ are Con functions, then $\mathrm{gof}:(M, \tau) \rightarrow$ $(\bar{M}, I(\bar{X}))$ is Con.

Proof.

Suppose that H is open set in $(\bar{M}, I(\bar{X}))$. Since g is Con, whenever $g^{-1}(H)$ is open set in (N, σ). Now, $(g \circ f)^{-1} H=f^{-1}\left(g^{-1}(H)\right)$. So $f^{-1}(H)$ is open set in $\left(M, I(X)\right.$)because $g^{-1}(H)$ is open set in (N, σ) Since f is con. Function, then gof $:(M, \tau) \rightarrow(\bar{M}, I(\bar{X}))$ is Con

The study present the definition and characterization of continuous map in terms of inverse image of closed.

Theorem (8)

Let W be closed set in (N, σ) and let $f:(M, \tau) \rightarrow(N, \sigma)$ is Con map if and only if $f^{-1}(W)$ is closed set in M,for each closed set W in (N, σ).

Proof.

Suppose that $f:(M, \tau) \rightarrow(N, \sigma)$ is Con and W is closed set in (N, σ), we get W^{c} is open set in (N, σ).

Since $f^{-1}\left(W^{c}\right)=f^{-1}(W)^{c}$ is open set in (M, τ), hence $f^{-1}(W)$ is closed set in (M, τ) whenever W is closed set $\operatorname{in}(N, \sigma)$.

Conversely,
For each W is closed set in (N, σ) and $f^{-1}(W)$ is closed set in (M, τ). Suppose that (M, τ) is open set in (N, σ). then W^{c} is closed set in (N, σ) By hypothesis $f^{-1}\left(W^{c}\right)=f^{-1}(W)^{c}$ is closed set in (M, τ).
Hence $f^{-1}(W)$ is open set in (M, τ). We get f is con.

