

جامعة تكريت – كلية التربية للبنات قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة: صفات التبولوجية في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq

We study topological and hereditary property of some separation

axioms.

Definition (34)

Let $f: (M, \tau) \to (N, \sigma)$ be any *Home* and δ any property in (M, τ) , we say that topological property if δ is appear in (N, σ) .

Proposition (35)

Let $f: (M, \tau) \to (N, \sigma)$ be injective OM and if (M, τ) is a T_i -space, then (N, σ) is T_i -space, where i = 0, 1, 2.

Proof.

We prove that i = 2

Suppose that $\check{u} \neq \check{v} \in N$, since f is injective then $\exists u \neq v \in M \ni \check{u} = f(u) \& \check{v} = f(v)$. We get there exists H, D are two disjoint open sets in M such that $u \in H \land v \in D$ (because $((M, \tau) \text{ is } T_{1-}\text{space})$ and $H \cap D = \emptyset$. Since f is OM, then f(H), f(D) are open sets of (M, τ) and $f(H \cap D) = \emptyset$, so $\check{u} = f(u) \in f(H)$ and $\check{v} = f(v) \in f(D)$.

Then (N, σ) is an T_2 _space. In the some way prove i=0,1.

Proposition (36)

The property of a space being a T_{i-} space is topological property. Where i =0,1,2.

Proof.

We prove that i=0 Suppose that $f: (M, \tau) \to (N, \sigma)$ is $Home_{N_P}, \check{u} \neq \check{v} \in M$. Since f is bijective, then $\exists u, v \in M$ such that $\check{u} = f(u), \check{v} = f(v)$ and $u \neq v$. Let (M, τ) be T_0 _space for u and v, then $\exists H$ is open set \exists $u \in H, v \notin H$, now f(H) is open set in (M, τ) (because H is open set in (M, τ) and f is OM), we get, $\check{u} \in f(H), \check{v} \notin f(H)$. Hence (N, σ) is T_{0} space. In the some way prove i=1,2. **Remark (37)**

A property δ of a topological space (M, τ) is said hereditary If and only if \forall subspace of (M, τ) also satisfies property δ .

Proposition (38)

The T_{0-} axiom of separation is hereditary property.

Proof.

We prove that i=0

Suppose that (M, τ) is T₀_space and (N, σ) is a subspace

on (M, τ) , As $u, v \in N \subseteq M$ if $u \neq v \in M$, we get there

exist open set on(M, τ) such that $u \in H$, $v \notin H$,

thus $H = N \cap H \to H$ is open set (because *H* is open set $\exists u \in H, v \notin H$), then $u \in H \& v \notin H$, hence (N, σ) is T_0 –space.

To prove that i = 2

Suppose that (M, τ) is T₂_space and (N, σ) is a subspace on (M, τ) , for $u, v \in$

 $N \subseteq M$, $u \neq v \in M$, then $\exists H, D$ are two disjoint open sets $\exists u \in H$, $v \notin H$

and $u \notin D$, $v \in D$, so $H = N \cap H$ and $D^{\circ} = N \cap D$.

Now $u \in H \in (N, \sigma)$ and $v \in D^* \in (N, \sigma)$ [because $u \in H \in (M, \tau)$ and $v \in D \in (M, \tau)$].

Since $H \cap D = \emptyset$, then $H \cap D^{\vee} = (N \cap H) \cap (N \cap D) =$

 $N \cap (H \cap D) = N \cap \emptyset = \emptyset.$

Hence (N, σ) is T₂_space. In the some way prove i=1

Proposition

Let (M, τ) be compact space and (M, τ) be T_2 _space, $f: (M, \tau) \to (N, \sigma)$ is bijective and cont., then f is Hom.

Proof.

To prove that f is Hom, it is enough to show that f^{-1} is cont.

For this we must show that f(F) is closed in N, for any closed $F \subseteq \mathcal{M}$.Being a clsoed subset of a compact set \mathcal{M} , F is compact set. then f(F) is compact subset of T_2 –space $((N, \sigma)$ and f(F) is closed, for any $F \subseteq \mathcal{M}$ is closed. which implies $f(F) \subseteq N$ is closed this f^{-1} is cont.

Then f is Hom because [f are bijective, continuous and f^{-1} is continuous].

Theorem

Let $f: (M, \tau) \to (N, \sigma)$ be cont. and injective map, if (M, τ) compact space and $((N, \sigma) \text{ is } T_2_\text{space}$. Then \mathcal{M} and N are homeomorphic.

Proof.

Let $\mathfrak{f}(\mathbb{A})$ be open in N, since \mathcal{M} is compact, \forall open set cover there corresponds a finite sub cover and N is T_2 , for any $u \neq v \in \mathcal{M}$, \exists two disjoint \mathbb{H} and \mathbb{D} are open set in N such that, $\mathfrak{f}(u) \in \mathbb{H}$, $\mathfrak{f}(v) \in \mathbb{D}$. Then open set \mathbb{A} in \mathcal{M} , $\mathfrak{f}(\mathbb{A})$ is open set in N and $\mathcal{M} - \mathfrak{f}(\mathbb{A})$ is closed set in N.

Now to prove $f^{-1} = h: N \to \mathcal{M}$ is cont. Also, to prove $h^{-1}(\mathbb{A})$ is open(closed) set in N. Since A is open set and $\mathcal{M} - A$ is closed set in \mathcal{M} , therefore $h^{-1}(N - A) = \mathcal{M} - h^{-1}(A)$, we have $h^{-1}(N - A) = \mathcal{M} - \mathfrak{f}(A)$ --(i) [because $h^{-1} = \mathfrak{f}$].

From (i) for each closed set in \mathcal{M} , we get h^{-1} is closed set in N and h is cont. map. Therefore f is Hom., then \mathcal{M} and N are homeomorphic.