

جامعة تكريت – كلية التربية للبنات –قسم الرياضيات المرحلة : الرابعة المادة: التبولوجيا العامة عنوان المحاضرة : تشاكل التبولوجي في الفضاء التبولوجية مدرس المادة : أ.د. رنا بهجت ياسين الايميل الجامعي : Zain 2016@ tu.edu.iq

Definitions

A map $f: (M, \tau) \to (N, \sigma)$ is called :

1. $\mathcal{N}_{\mathcal{P}}$ open map $(\mathcal{N}_{\mathcal{P}} OM)$ if, $\mathfrak{f}(\mathbb{A}) \in \mathcal{N}_{\mathcal{P}} O(N, \sigma)$ for each $\mathbb{A} \in \tau(\mathbb{X})$.

 $\mathcal{N}_{\mathcal{P}}$ closed map $(\mathcal{N}_{\mathcal{P}}$ CM) if, for each $\mathbb{A}^{c} \in \tau(\mathbb{X}), \mathfrak{f}(\mathbb{A}^{c}) \in (N, \sigma)$.

Proposition

A bijective map $f: (M, \tau) \to (N, \sigma)$ is $\mathcal{N}_{\mathcal{P}}$ _OM iff f is $\mathcal{N}_{\mathcal{P}}$ _CM

Proof.

Let \mathfrak{f} be $\mathcal{N}_{\mathcal{P}}$ _CM, bijective map and $\mathbb{A} \subseteq \mathcal{M}$, thus \mathbb{A}^c is a $\mathcal{N}_{\mathcal{P}}$ _CS. Since \mathfrak{f} is a $\mathcal{N}_{\mathcal{P}}$ _CM, then $\mathfrak{f}(\mathbb{A}^c)$ is a $\mathcal{N}_{\mathcal{P}}$ _CS in N. Therefore $\mathfrak{f}(\mathbb{A}^c)^c$ is a $\mathcal{N}_{\mathcal{P}}$ _OS, so

 $\mathfrak{f}(\mathbb{A}^c)^c = \mathfrak{f}(\mathbb{A})$ (because \mathfrak{f} be bijective). Hence $\mathfrak{f}(\mathbb{A})$ is a $\mathcal{N}_{\mathcal{P}}$ OS in N.

So f is $\mathcal{N}_{\mathcal{P}}$ _OM. In similar way we can prove that only if part.

Propositions

Let $f: (M, \tau) \to (N, \sigma)$ be a bijective map, then:

- 1. f is a $\mathcal{N}_{\mathcal{P}}$ OM iff f^{-1} is a Con_{$\mathcal{N}_{\mathcal{P}}$}.
- 2. f is a $\mathcal{N}_{\mathcal{P}}$ CM iff f^{-1} is a Con_{$\mathcal{N}_{\mathcal{P}}$}.

Proof.

1. Let \mathfrak{f} is a $\mathcal{N}_{\mathcal{P}}$ _OM and $\mathbb{A} \subseteq \mathcal{M}$, then $\mathfrak{f}(\mathbb{A}) \mathcal{N}_{\mathcal{P}}$ _OS in N, $(\mathfrak{f}^{-1})^{-1}(\mathbb{A}) = \mathfrak{f}(\mathbb{A}) \mathcal{N}_{\mathcal{P}}$ _OS in \mathcal{M} . Then \mathfrak{f}^{-1} is a $\operatorname{Con}_{\mathcal{N}_{\mathcal{P}}}$.

Conversely,

Let f be bijective, then $\forall A \subseteq \mathcal{M}$, $(f^{-1})^{-1}(A) = f(A)$. Let A is $\mathcal{N}_{\mathcal{P}}$ _OS

in \mathcal{M} , we get $(\mathfrak{f}^{-1})^{-1}(\mathbb{A})$ is an $\mathcal{N}_{\mathcal{P}}$ OS in N

(because f^{-1} is a Con_{$\mathcal{N}_{\mathcal{P}}$}) and since f be bijective, then $f(\mathbb{A})$ is a $\mathcal{N}_{\mathcal{P}}$ _OS

In *N*. Hence f is a $\mathcal{N}_{\mathcal{P}}$ OM.

In similar way we can prove that (2). \blacksquare

Remark (4.2.7)

It is clear that every $Hom_{\mathcal{N}_{\mathcal{P}}}$ map is $Con_{\mathcal{N}_{\mathcal{P}}}$, but the converse is not true.

Because there exist the map f is bijective, $Con_{\mathcal{N}_{\mathcal{P}}}$, but f^{-1} not $Con_{\mathcal{N}_{\mathcal{P}}}$.

Therefore \mathfrak{f} is not $Hom_{\mathcal{N}_{\mathcal{P}}}$.

Definition (14)

The bijective map $f: (M, \tau) \to (N, \sigma)$ is called homeomorphism

(Home) if, it is Con .and OM.

Proposition (15)

The bijective map $f: (M, \tau) \to (N, \sigma)$ is a *Home* if and only if cl(f(A)) = f(cl(A)), for each $A \subseteq M$.

Proof.

Let f be *Home*, therefore f be a *Con* and *closed* function, so $f(cl(A)) \subseteq cl(f(A))$, $\forall A \subseteq M$. Since cl(A) is closed set in (M, τ) and f is closed, then f(cl(A)) is a CM in (N, σ) , therefore $cl(f(cl(A))) = f(cl_{N_P}(A))$ implies $cl(f(A)) \subseteq cl(f(cl(A))) = f(cl(A))$ [because $A \subseteq cl(A), f(A) \subseteq f(cl(A))$], therefore $cl(f(A)) \subseteq f(cl(A))$. Then cl(f(A)) = f(cl(A)).

For each $A \subseteq M$ and $cl(f(A)) = f(cl(A)) \ni A = cl(A)$ then A is closed set in (M, τ) and f(A) = f(cl(A)), so f is a Con. Therefore f(A) = cl(f(A)), thus f(A) is a closed set, we get f is a CM and Con. Hence f is a Home

Remarks (16)

1. If f is Home, then f^{-1} is also Home.

Since f is bijective, then f^{-1} is bijective, f is Home and f^{-1} is Con. also $f = (f^{-1})^{-1}$ is Con. Therefore, f^{-1} is Home map.

- 2. The bijective map $f: (M, \tau) \to (N, \sigma)$ is a *Home* if and only if $cl(f^{-1}(B)) = f^{-1}(cl(B)), B \subseteq M$.
- 3. The bijective map $f: (M, \tau) \to (N, \sigma)$ is a *Home* if and only if $int(f^{-1}(B)) = f^{-1}(int(B)), B \subseteq M.$

Propositions (17)

Let $f: (M, \tau) \to (N, \sigma)$ and $g: (M, \tau) \to (Y, \sigma)$

be two maps, then:

- 1. If f and g are CM (OM), then gof is CM (OM).
- 2. If gof is CM (OM) and f is surjective Con. then g is CM (OM).
- 3. If gof is CM (OM) and g is surjective *Con*. then f is CM (OM).

Proof.

1. For each D be closed set in (M, τ) then f(D) is a closed

set in (M, I(X)), thus g(f(D)) is closed set in (Y, σ) . But, gof(D) = g(f(D)). Hence gof is CM.

2. For each D is closed set in (Y, σ) then f⁻¹(D) is closed set in (M, τ) thus gof(f⁻¹(D)) is closed set in (Y, σ) Since f is onto then gof(f⁻¹(D)) = g(D), hence g(D) is closed set in (N, σ). Thus g is CM. ■

3. For each *D* is closed set in (M, τ) and let gof(D) be closed in $(\overline{M}, I(\overline{X}))$, we get $g^{-1}(gof(D))$ is closed in (N, σ) Hence $g^{-1}(gof(D)) = f(D)$ (because *g* is onto), so f(D) is closed set in (N, σ) , then *f* is CM.

Remark (18)

The two (M, τ) and (N, σ) are said to be homeomorphic if there exists *Home* from (M, τ) to (N, σ) and denoted by $(M, \tau) \cong (N, \sigma)$.