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Theorem:  The following six sequences converge to the limits listed below: 
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Proof: 1), 2), 3)it’s easy.  

4)   If | |   ,           , we need to show that to each    , there corresponds an 

integers N so large that |  |          

Since  
 

    , while | |   , there exists an integer N for which  
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|  |  | |    … (1) 

If | |   , then |  |  |  |       … (2).  

Combing (1) & (2) produces |  |         . 
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prove that . Let   | |   
| |

 
  , by (4) we have that (

| |

 
)
 

   s.t    . 

| | 

  
 

| | 

                   
 

| | 

      
 

| |   

    
 

  

  
(
| |

 
)

 

 



 

Thus   
| | 

  
 

  

  
(
| |

 
)
 

.   
| | 

  
  , becauce (

| |

 
)
 

  .  

By sandwich theorem, we have that proof. 

 

Ex: Test the Conv. Or Div. of the following Sequences. 

1-    
    

 
     

   

    

 
  . Conv. 

2-    (
   

 
)
 

         (  
  

 
)
 

    . Conv. 

3-           
   

    . Div. 
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  . Conv. 

Bounded Monotonic Sequences 

Def: A sequence      is bounded from above  if      s.t        , The number   is 

an upper bonded for     . If M is upper bounded for     , but no number less than M is 

an upper bounded for     , then M is the least upper bounded for     .  

 

We say      is bounded from below if      s.t        , The number   is lower 

bonded for     . If m is alower bounded for     , but no number greater than m is an 

lower bounded for     , then m is the greatest lower bounded for     . 

If      is bounded from above and below, then      is bounded. If      is not bounded, 

then we say that      is an unbounded Sequence. 

Def: A sequence      is non-decreasing. If           . That is           , the 

sequence is non-increasing. If           . The sequence      is monotonic if it’s 

either non-decreasing or non-increasing. 

Theorem: If a sequence      is both bounded and monotonic, then the sequence is 

converges. 

Ex: Test the increasing and decreasing of the following sequences: 
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  .   The sequence is increasing for all 
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  .   The sequence is decreasing for 

all        . 

3)                  .       
 

    
  increasing for      . 

 

Infinite Series 

 
Def: Given a sequence of numbers     , an expression of the form             

     is an infinite series. The number    is the nth term of the series. The sequence 

     defined by  

      

         

            

  

                 ∑   

 

   

 

Is the sequence of partial sums of the series, the number    being the nth partial sum. If 

the sequence of partial sums converges to a limit  , we say that the series converges and 

that is sum is  . In this case, we also write  

                ∑     

 

   

 

If the sequence of partial sums of the series does not converge, we say that the series 

diverges. 
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Geometric Series 
 

The geometric series is a series of the form  
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The sum of the first nth terms of formula above is 

                       … (1) 

Multiply both sides of Eq.(1) by  , we have that  

                          … (2) 

Subtract Eq.(2) from (1). Thus             . 

     
       

   
 , s.t    . 

Now to test the convergence of this series  
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Ex: Test the Conv. and Div. of the following series and find of the sum: 
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Ex: Find the sum of the following series 
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4) ∑         
                ,                  is Div. because of 

the oscillation of    between 1,0. 

 

Theorem:   If ∑      and  ∑     are convergent series then: 

1) Sum Rule:                                    ∑        ∑   ∑      . 

2) Constant Multiple Rule:            ∑     ∑     . 

 

 

 

 

 

 

 

 


