

جامعة تكريت

كلية التربية للبنات

قسم الرياضيات

المرحلة الثانية

مادة التفاضل المتقدم

المتتابعات غير المنتهية Infinite sequences

اسم التدريسي : أ.م. ايلاف صباح عبدالواحد

elafs.math@tu.edu.iq الايميل:

Definition: A sequence is a function from the positive integers numbers to real numbers. and we denoted by $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$,

A sequence is a list of numbers written in a definite order $\{a_1, a_2, a_3, ..., a_n, ...\}$. The Sequence have, a_1 is called the first term, a_2 the second term, a_n is the nth term. can be dfind by given a formula for nth term as shown that:-

$$1- \{\frac{n}{n+1}\}_{n=1}^{\infty} \to \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\}.$$

$$2- \{\frac{(-1)^n(n+1)}{3^n}\}_{n=1}^{\infty} \to \{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{8}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\}.$$

$$3- \{Cos(\frac{n\pi}{6})\}_{n=1}^{\infty} \to \{1, \frac{\sqrt{3}}{2}, 0, \dots, Cos(\frac{n\pi}{6}), \dots\}.$$

$$4- \{\sqrt{n-3}\}_{n=1}^{\infty} \to \{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\}.$$

Convergence and divergence (Graphically):-

<u>Definition</u>: The sequence $\{a_n\}_{n=1}^{\infty}$ converges to the number \mathcal{L} , if for every positive number ϵ there corresponds an integer N such that for all n.

$$n > N \rightarrow |a_n - \mathcal{L}| < \epsilon$$

If no such number \mathcal{L} exists, we say that $\{a_n\}$ <u>diverges</u>. If $\{a_n\}$ converges to \mathcal{L} , we write $\lim_{n\to\infty} a_n = \mathcal{L}$ or simply $a_n \to \mathcal{L}$, and called \mathcal{L} the limit of the sequence.

Ex: Show that: $1 - \lim_{n \to \infty} \frac{1}{n} = 0$ $2 - \lim_{n \to \infty} k = k$.

Sol: 1) Let $\epsilon > 0$ be given, we must show that $\exists N \in \mathbb{Z}$ s.t $n > N \to \left|\frac{1}{n} - 0\right| < \epsilon \Rightarrow$ $\frac{1}{n} < \epsilon$ or $n > \frac{1}{\epsilon}$. If N is any integer greater than $\frac{1}{\epsilon}$, will hold $\forall n > N$. Then $\lim_{n \to \infty} \frac{1}{n} = 0$.

2) Let $\epsilon > 0$ be given, $n > N \rightarrow |k - k| < \epsilon$, since k - k = 0, this all ready it's hold $\forall n > N$. Then $\lim_{n \to \infty} k = k$.

Ex: Solve of the following sequences.

1-
$$\left\{\frac{n^2}{(n+1)^2}\right\}$$
 2- $\left\{\frac{n^2}{2n-1}Sin(\frac{1}{n})\right\}$ **3-** $\left\{\frac{lnn}{n}\right\}$.

Sol:

1)
$$\lim_{n\to\infty} \frac{n^2}{n^2+2n+1} = \lim_{n\to\infty} \frac{1}{1+\frac{2}{n}+\frac{1}{n^2}} = 1$$
, the sequence convergence to 1.

2) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{2n-1} Sin(\frac{1}{n}), \text{ let } u=1/n, \text{ where } n \to \infty, u \to 0$ $\lim_{u \to 0} \frac{\frac{1}{u^2}}{2\frac{1}{u}-1} sin(u) = \lim_{u \to 0} \frac{1}{2-u} \cdot \frac{sin(u)}{u} = \frac{1}{2}. \text{ The sequence converges to } \frac{1}{2}.$

3) $\lim_{n\to\infty} \frac{\ln n}{n}$, by using L'Hopital's Rule = $\lim_{n\to\infty} \frac{\frac{1}{n}}{\frac{1}{n}} = 0$. The Seq. Conv. To 0.

<u>Theorem</u>: Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers and let A and B be real numbers. The following rules hold if $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.

- 1- Sum Rule: $\lim_{n\to\infty} (a_n + b_n) = A + B$.
- 2- Difference Rule: $\lim_{n\to\infty} (a_n b_n) = A B$.
- 3- Constant Multiple Rule: $\lim_{n\to\infty} (kb_n) = kB, k \in R$.
- 4- Product Rule: $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B.$
- 5- Quotient Rule: $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, if $B \neq 0$.

Theorem: (The Sandwich theorem for Sequences)

Let $\{a_n\}, \{b_n\}$ and $\{C_n\}$ be sequences of real numbers. If $a_n \le b_n \le C_n$ hold for all n beyond some index N, and if $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} C_n = L$, then $\lim_{n\to\infty} b_n = L$ also.

Ex: Since $\frac{1}{n} \rightarrow 0$, we know that

 $1-\frac{\cos(n)}{n} \to 0 \text{ , because } -\frac{1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}.$ $2-\frac{1}{2^n} \to 0 \text{ , because } 0 \le \frac{1}{2^n} \le \frac{1}{n}.$ $3-(-1)^n \frac{1}{n} \to 0 \text{ , because } -\frac{1}{n} \le (-1)^n \frac{1}{n} \le \frac{1}{n}.$

<u>Theorem</u>: Let $\{a_n\}$ be sequence of real numbers. If $a_n \to L$ and if **f** is a function; that is continuous at *L* and defined at all a_n , then $f(a_n) \to f(L)$.

Ex: Show that
$$\sqrt{\frac{n+1}{n}} \to 1$$
.

Sol: We know that $\frac{n+1}{n} \to 1$, taking $f(x) = \sqrt{x}$ L=1 in theorem gives $\sqrt{\frac{n+1}{n}} \to \sqrt{1} = 1$

•
$$\{2^{\frac{1}{n}}\} \to 1, f(x) = 2^x, a_n = \frac{1}{n}.$$

Theorem: Suppose that f(x) is a function defined $\forall x \ge n_0$, and that $\{a_n\}$ is a sequence of real numbers s.t $a_n = f(n)$, $\forall n \ge n_0$. Then $\lim_{x\to\infty} f(x) = L \implies \lim_{n\to\infty} a_n = L.$ **Ex:** Show that $\lim_{n\to\infty} \frac{\ln n}{n} = 0$ The function $\frac{\ln x}{x}$ is defined $\forall x \ge 1 \Rightarrow \lim_{x \to \infty} \frac{\ln x}{x}$ by L'Hopital's Rule $\lim_{x\to\infty} \frac{\frac{1}{x}}{\frac{1}{x}} = \frac{0}{1} = 0.$ $\therefore \lim_{n \to \infty} \frac{\ln n}{n} = 0.$ **Ex:** Does the Sequence whose nth term is converge? If so, find $\lim_{n\to\infty} a_n$. $a_n = \left(\frac{n+1}{n-1}\right)^n$ Sol: $\ln a_n = n \ln \left(\frac{n+1}{n-1}\right)$, then $\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} n \ln \left(\frac{n+1}{n-1}\right)$, by L'Hopital's Rule $\lim_{n \to \infty} \frac{\ln\left(\frac{n+1}{n-1}\right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{-2}{(n-1)^2}}{\frac{-1}{n^2}} = \lim_{n \to \infty} \frac{2n^2}{(n-1)^2} = 2.$ Since $a_n \to 2$, and $f(x) = e^x$ is Cont. $\therefore a_n = e^{\ln a_n} \to e^2$.