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Definition: A sequence is a function from the positive integers numbers to real 

numbers. and we  denoted by *  + or *  +   
 ,    

A sequence is a list of numbers written in a definite order  *               +. 

The Sequence have,    is called the first term,    the second term,    is the nth term.  

can be dfind by given a formula for nth term as shown that:-  
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Convergence and divergence (Graphically):- 
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Definition:  The sequence *  +   
 converges to the number  , if for every positive 

number   there corresponds an integer N such that for all n. 

      |    |   .  

If no such number   exists, we say that *  + diverges. If *  + converges to  , we 

write            or simply     , and called   the limit of the sequence. 

Ex: Show that:      1-       
 

 
     2-          . 

Sol:    1) Let     be given, we must show that      s.t     |
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. If N is any integer greater than 

 

 
, will hold      . Then 
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2) Let     be given,      |   |   , since      , this all ready it’s 

hold      . Then          . 

Ex:   Solve of the following sequences. 
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Sol: 
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  , the sequence convergence to 1. 

2)                
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), let u=1/n, where    ,     
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3)       
   

 
, by using L’Hopital’s Rule =      

 

 

 
  . The Seq. Conv. To  . 

 



  

 

Theorem: Let *  + and *  + be sequences of real numbers and let A and B be real 

numbers. The following rules hold if           and           . 

1- Sum Rule:                 (     )     . 

2- Difference Rule:            (     )     . 

3- Constant Multiple Rule:      (   )    ,    . 

4- Product Rule:                                 (     )     . 

5- Quotient Rule:                               
  

  
 
 

 
         . 

Theorem: (The Sandwich theorem for Sequences) 

Let *  + ,*  + and *  +  be sequences of real numbers. If          hold for all 

n beyond some index N, and if           and           , then 

           also. 

Ex: Since
 

 
  , we know that  
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Theorem: Let *  + be sequence of real numbers. If      and if   is a function; that is 

continuous at   and defined at all   , then  (  )   ( ). 

Ex: Show that √
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Sol: We know that 
   

 
  , taking  ( )  √ & L=1 in theorem gives √
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Theorem: Suppose that  ( ) is a function defined        , and that *  + is a 

sequence of real numbers s.t     ( )        .  

Then       ( )                  . 

Ex: Show that       
   

 
   

The function 
   

 
 is defined            

   

 
 

by L’Hopital’sRule      
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Ex: Does the Sequence whose nth term is converge? If so, find         .  
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Sol:         (
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) , by L’Hopital’s Rule 
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Since     , and  ( )     is Cont. 
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