

جامعة تكريت كلية التربية للبنات قسم الرياضيات المرحلة الثانية مادة التفاضل المتقدم

Convergence and Divergence tests for Infinite Series

التقارب والتباعد للمتسلسلات غير المنتهية

اسم التدريسي : أ.م. ايلاف صباح عبدالواحد

elafs.math@tu.edu.iq الايميل:

- 1) Sum Rule:
- 2) Constant Multiple Rule:

 $\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n = A \pm B.$ $\sum ka_n = k \sum a_n = kA.$

Convergence and Divergence tests for Infinite Series

- (1) The n^{the}-term test for a divergent series.
- If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ is Div.

<u>Notice</u>: If $\lim_{n\to\infty} a_n = 0$, then we can't conclude that the series is convergent, this condition is necessary, but not sufficient for convergence.

Ex: Use the nth-term test to find whether the following series are divergent or not.

- 1) $\sum_{n=1}^{\infty} \frac{3n}{5n+1}$, since $\lim_{n \to \infty} \frac{3n}{5n+1} = \frac{3}{5} \neq 0$. Then is Div.
- 2) $\sum_{n=1}^{\infty} nSin(\frac{1}{n})$, Let $=\frac{1}{n}$, $\lim_{n\to\infty} \frac{Sin(u)}{u} = 1 \neq 0$. Div.

n

$$3)\sum_{n=1}^{\infty} \frac{n}{2n+5} = \lim_{n \to \infty} \frac{\frac{n}{n}}{\frac{2n}{n} + \frac{5}{n}} = \frac{1}{2 + \frac{5}{n}} = \frac{1}{2 + \frac{5}{\infty}} = \frac{1}{2 + 0} = \frac{1}{2}$$

is div.

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} (\frac{n}{n} + \frac{1}{n}) = \lim_{n \to \infty} (1 + \frac{1}{n}) = 1 + 0 = 1$$

• (2) The P-Series

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called, the P-Series (P is real constant).

* If $= 1 \Rightarrow a_n = \frac{1}{n}$, then by integral test $\int_1^{\infty} \frac{1}{x} dx = \infty$. Div. * If $p > 1 \Rightarrow a_n = \frac{1}{n^p}$ we have $\int_1^{\infty} \frac{1}{x^p} dx = \frac{x^{-p+1}}{-p+1} \Big|_1^{\infty} = \frac{1}{1-p} (0-1) = \frac{1}{p-1}$. Conv. \therefore The P-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1, and divergent if $p \le 1$.

Ex:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} \implies p = \frac{1}{2} < 1.$$

The series is div. by p-series.

Ex: $\sum_{n=1}^{\infty} \frac{1}{n^3} \implies p = 3 > 1$. The series is conv. by p-series.

(3) The Integral Test

<u>Corollary</u>: A series $\sum a_n$ of <u>non-negative</u> terms converges <u>if and only if</u> it's partial sums are <u>bounded from above</u>.

Ex: The Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, the harmonic series is divergent. $1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \frac{1}{10} + \cdots + \frac{1}{16}\right) + \cdots$ $> 1 + \frac{1}{2} + \left(\frac{1}{2}\right) + \left(\frac{4}{8} = \frac{1}{2}\right) + \left(\frac{8}{16} = \frac{1}{2}\right) + \cdots$ In general, the sum of 2^n terms ending with $\frac{1}{2^{n+1}}$ is greater than $\frac{2^n}{2^{n+1}} = \frac{1}{2}$. The sequence

In general, the sum of 2^n terms ending with $\frac{1}{2^{n+1}}$ is greater than $\frac{1}{2^{n+1}} = \frac{1}{2}$. The sequence of partial sums is not bounded from above, if $n = 2^k$, the partial sum S_n is greater than $\frac{k}{2}$, the harmonic series is diverges.

Theorem: (The Integral test)

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a <u>continuous</u>, <u>positive</u>, <u>decreasing</u> function of x for all $x \ge N$ ($N \in Z^+$). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_N^{\infty} f(x) dx$ both convergent or both divergent.

Ex: Test the convergence and divergence of the series:

- 1) $\sum_{n=1}^{\infty} \frac{1}{n^2}$, $f(x) = \frac{1}{x^2} \Rightarrow \int_1^{\infty} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_1^{\infty} = 0 1 = 1$. The series is convergent.
- 2) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$, $f(x) = \frac{\ln x}{x} \Rightarrow \int_{1}^{\infty} \frac{\ln x}{x} dx = \frac{(\ln x)^2}{2} \Big|_{1}^{\infty} = \infty$. Div.
- 3) $\sum_{n=1}^{\infty} \frac{1}{n^2+1} \Rightarrow \int_{1}^{\infty} \frac{1}{x^2+1} dx = \tan^{-1}(x) \Big|_{1}^{\infty} = \frac{\pi}{2} \frac{\pi}{4} = \frac{\pi}{4}$. Conv.

Ex: Test the convergence and divergence of the series by integral test.

$$\sum_{n=1}^{\infty} \frac{e}{1+e^{2n}}^{n}$$

$$f(x) = \frac{e^{x}}{1+e^{2x}}$$

$$f'(x) = \frac{(1+e^{2x})e^{x} - e^{x} \cdot (2e^{2x})}{(1+e^{2x})^{2}} = \frac{e^{x} + e^{3x} - 2e^{3x}}{(1+e^{2x})^{2}} = \frac{e^{x} (1-e^{2x})}{(1+e^{2x})^{2}}$$

$$f'(x) = \frac{(1+e^{2x})e^{x} - e^{x} \cdot (2e^{2x})}{(1+e^{2x})^{2}} = \frac{e^{x} + e^{3x} - 2e^{3x}}{(1+e^{2x})^{2}} = \frac{e^{x} (1-e^{2x})}{(1+e^{2x})^{2}}$$

$$\forall x \ge 1$$

$$\forall x \ge 1$$

$$\int_{1}^{\infty} f(x) \, dx = \lim_{x \to \infty} \int_{1}^{\infty} \frac{e^{x}}{1+e^{2x}} \, dx$$

$$\lim_{x \to \infty} \int_{1}^{\infty} \frac{e^{x}}{1+e^{2x}} \Rightarrow \lim_{x \to \infty} \frac{e^{x}}{1+(e^{x})^{2}} \, dx$$

$$\lim_{x \to \infty} [\tan^{-1}(e^{x})]_{1}^{x} = \lim_{x \to \infty} [\tan^{-1}(e^{x}) - \tan^{-1}(e^{1})] = \frac{\pi}{2} - \tan^{-1}(e^{1})$$

المتسلسلة متقاربة.