

جامعة تكريت كلية التربية للبنات قسم الرياضيات المرحلة الثانية مادة التفاضل المتقدم

Convergence and Divergence tests for Infinite Series

 التقارب والتباعد للمتسلسالت غير المنتهية

اسم التدريسي : أ.م. ايالف صباح عبدالواحــد

elafs.math@tu.edu.iq :االيميل

- 1) Sum Rule:
- 2) Constant Multiple Rule: $\sum ka_n = k \sum a_n = kA$.

 $\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n = A \pm B.$

Convergence and Divergence tests for Infinite Series

- (1) The n^{the}-term test for a divergent series.
- If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ is Div.

Notice: If $\lim_{n\to\infty} a_n = 0$, then we can't conclude that the series is convergent, this condition is necessary, but not sufficient for convergence.

Ex: Use the nth-term test to find whether the following series are divergent or not.

- 1) $\sum_{n=1}^{\infty} \frac{3}{5n}$ 5 ∞ $\sum_{n=1}^{\infty} \frac{3n}{5n+1}$, since $\lim_{n\to\infty} \frac{3}{5n}$ $\frac{3n}{5n+1} = \frac{3}{5}$ $\frac{5}{5} \neq 0$. Then is Div.
- 2) $\sum_{n=1}^{\infty} n Sin(\frac{1}{n})$ $\sum_{n=1}^{\infty} nSin(\frac{1}{n})$ $\sum_{n=1}^{\infty} n Sin(\frac{1}{n})$, Let $=\frac{1}{n}$ $\frac{1}{n}$, $\lim_{n\to\infty} \frac{s}{n}$ $\frac{u(u)}{u}$ = 1 \neq 0. Div.

n

$$
3)\sum_{n=1}^{\infty} \frac{n}{2n+5} = \lim_{n \to \infty} \frac{\frac{n}{n}}{\frac{2n}{n} + \frac{5}{n}} = \frac{1}{2 + \frac{5}{n}} = \frac{1}{2 + \frac{5}{\infty}} = \frac{1}{2 + 0} = \frac{1}{2}
$$

is div.

$$
\sum_{n=1}^{\infty} \frac{n+1}{n} = \lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} \left(\frac{n}{n} + \frac{1}{n}\right) = \lim_{n \to \infty} (1 + \frac{1}{n}) = 1 + 0 = 1
$$

- **(2) The P-Series**
- $\sum_{n=1}^{\infty} \frac{1}{n}$ \boldsymbol{n} ∞ $\sum_{n=1}^{\infty}$ is called, the P-Series (P is real constant).

 \boldsymbol{n}

* If = 1 $\Rightarrow a_n = \frac{1}{n}$ $\frac{1}{n}$, then by integral test $\int_1^{\infty} \frac{1}{x}$ \mathcal{X} ∞ $\int_{1}^{\infty} \frac{1}{x} dx = \infty$. Div. * If $p > 1 \Rightarrow a_n = \frac{1}{n!}$ $\frac{1}{n^p}$ we have $\int_1^\infty \frac{1}{x^p}$ x^p ∞ $\int_{1}^{\infty} \frac{1}{x^p} dx = \frac{x^{-}}{-x}$ $\frac{x}{-p+1}$ ∞ $\frac{1}{1}$ = $\frac{1}{1-}$ $\frac{1}{1-p}(0-1) = \frac{1}{p-1}$ $\frac{1}{p-1}$.Conv. ∴ The P-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ∞ $\sum_{n=1}^{\infty} \frac{1}{n p}$ is convergent if $p > 1$, and divergent if $p \leq 1$.

Ex:
$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} \implies p = \frac{1}{2} < 1.
$$

The series is div. by p-series.

Ex: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ \boldsymbol{n} ∞ $\frac{\infty}{n=1\,n^3} \Rightarrow p=3>1$. The series is conv. by p-series.

(3) The Integral Test

Corollary: A series $\sum a_n$ of non-negative terms converges if and only if it's partial sums are bounded from above.

<u>Ex:</u> The <u>Harmonic</u> Series $\sum_{n=1}^{\infty} \frac{1}{n}$ \boldsymbol{n} ∞ \boldsymbol{n} $\mathbf{1}$ $\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3} + \frac{1}{4}$ $\frac{1}{4}$ + …, the harmonic series is divergent. $\mathbf{1}$ $\mathbf{1}$ \overline{c} $+$ ($\mathbf{1}$ 3 $\ddot{}$ $\mathbf{1}$ $\overline{4}$ $) + ($ $\mathbf{1}$ 5 $+$ $\mathbf{1}$ 6 $+$ $\mathbf{1}$ 7 $+$ $\mathbf{1}$ 8 $) + ($ $\mathbf{1}$ 9 $\ddot{}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\frac{1}{16}$ + \geq $\mathbf{1}$ \overline{c} $+$ ($\mathbf{1}$ \overline{c} $) + ($ 4 8 $=$ $\mathbf{1}$ \overline{c} $) + ($ 8 $\mathbf{1}$ $\mathbf{1}$ \overline{c} $\vert +$ In general, the sum of 2^n terms ending with $\frac{1}{2^{n+1}}$ is greater than $\frac{2^n}{2^{n+1}}$ $2ⁿ$ $\mathbf{1}$ $\frac{1}{2}$. The sequence

of partial sums is not bounded from above, if $n = 2^k$, the partial sum S_n is greater than $\frac{k}{2}$, the harmonic series is diverges.

Theorem: (The Integral test)

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ ($N \in \mathbb{Z}^+$). Then the series $\sum_{n=N}^{\infty}a_n$ and the integral $\int_{N}^{\infty}f(x)dx$ both convergent or both divergent.

Ex: Test the convergence and divergence of the series:

- 1) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ \dot{n} ∞ $\sum_{n=1}^{\infty} \frac{1}{n^2} f(x) = \frac{1}{x^2}$ $rac{1}{x^2} \Rightarrow \int_1^{\infty} \frac{1}{x^2}$ x^2 ∞ $\int_{1}^{\infty} \frac{1}{x^2} dx = -\frac{1}{x}$ $\frac{1}{x}$ ∞ $\frac{1}{1} = 0 - 1 = 1$. The series is convergent.
- 2) $\sum_{n=1}^{\infty} \frac{l}{2}$ n ∞ $\sum_{n=1}^{\infty} \frac{\ln n}{n}$, $f(x) = \frac{b}{x}$ $\frac{nx}{x} \Rightarrow \int_1^\infty \frac{l}{t}$ \mathcal{X} ∞ $\int_1^{\infty} \frac{\ln x}{x} dx = \frac{(\ln x)^2}{2}$ $\frac{(\lambda)}{2}$ ∞ $\sum_{1}^{\infty} = \infty$. Div.
- 3) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ \boldsymbol{n} $\frac{\infty}{n=1} \frac{1}{n^2+1} \Rightarrow \int_1^{\infty} \frac{1}{x^2+1}$ x^2 ∞ $\int_{1}^{\infty} \frac{1}{x^2+1} dx = \tan^{-1}(x)$ ∞ $\frac{\infty}{1} = \frac{\pi}{2}$ $\frac{\pi}{2}-\frac{\pi}{4}$ $\frac{\pi}{4} = \frac{\pi}{4}$ $\frac{\pi}{4}$. Conv.

Ex: Test the convergence and divergence of the series by integral test.

$$
\sum_{n=1}^{\infty} \frac{e^{-n}}{1+e^{2n}}
$$
\n
$$
f(x) = \frac{e^{x}}{1+e^{2x}}
$$
\n
$$
f'(x) = \frac{(1+e^{2x})e^{x} - e^{x}.(2e^{2x})}{(1+e^{2x})^{2}} = \frac{e^{x} + e^{3x} - 2e^{3x}}{(1+e^{2x})^{2}} = \frac{e^{x} - e^{3x}}{(1+e^{2x})^{2}} = \frac{e^{x}(1-e^{2x})}{(1+e^{2x})^{2}}
$$
\n
$$
\forall x \ge 1
$$
\n
$$
\int_{1}^{\infty} f(x) dx = \lim_{x \to \infty} \int_{1}^{\infty} \frac{e^{x}}{1+e^{2x}} dx
$$
\n
$$
\lim_{x \to \infty} \int_{1}^{\infty} \frac{e^{x}}{1+e^{2x}} \Rightarrow \lim_{x \to \infty} \frac{e^{x}}{1+(e^{x})^{2}} dx
$$
\n
$$
\lim_{x \to \infty} [\tan^{-1}(e^{x})]_{1}^{\infty} = \lim_{x \to \infty} [\tan^{-1}(e^{\pi}) - \tan^{-1}(e^{1})] = \frac{\pi}{2} - \tan^{-1}(e^{1})
$$

 $\frac{1}{2}$

المتسلسلة متقاربة