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Ex: Find the sum of the following series 
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4) ∑         
                , {  }  {         } is Div. because of 

the oscillation of    between 1,0. 

Theorem:   If ∑      and  ∑     are convergent series then: 

1) Sum Rule:                                    ∑        ∑   ∑      . 

2) Constant Multiple Rule:            ∑     ∑     . 

 

Convergence and Divergence tests for Infinite Series 

  (1) The nthe-term test for a divergent series. 

If           , then ∑   is Div. 

Notice:If           , then we can’t conclude that the series is convergent, this 

condition is necessary, but not sufficient for convergence. 



 

 

Ex: Use the nth-term test to find whether the following series are divergent or not. 
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 (2) The P-Series 

∑
 

  
 
      is called, the P-Series (P is real constant). 
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 , then by integral test  ∫
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  The P-series ∑
 

  
 
    is convergent if    , and divergent if    . 

Ex:    ∑
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The series is  div. by p-series. 

Ex:      ∑
 

  
 
             .The series is conv. by p-series. 
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 (3) The Integral Test 

 

Corollary: A series ∑   of non-negative terms converges if and only if it’s partial sums 

are bounded from above. 

 

Ex: The Harmonic Series ∑
 

 
 
      

 

 
 

 

 
 

 

 
  , the harmonic series is divergent.  
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In general, the sum of    terms ending with 
 

     is greater than 
  

     
 

 
. The sequence 

of partial sums is not bounded from above, if     , the partial sum    is greater than 
 

 
, 

the harmonic series is diverges. 

 

Theorem: (The Integral test) 

Let {  } be a sequence of positive terms. Suppose that        , where   is a 

continuous, positive, decreasing function of   for all           . Then the series 

∑   
 
    and the integral ∫       

 

 
 both convergent or both divergent. 

 

Ex:   Test the convergence and divergence of the series:  
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      . The series is convergent. 
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Ex: Test the convergence and divergence of the series by integral test.  
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