
An Introduction to Numerical Analysis

with MATLAB

Lecture Notes

Mohammad Sabawi

Department of Mathematics
College of Education for Women

Tikrit University

Email: mohammad.sabawi@tu.edu.iq

01 October 2018



List of Tables

2.1 Bisection Method Solution of Example ?? . . . . . . . . . . . 20
2.2 False Position Method Solution of Example ?? . . . . . . . . . 22
2.3 Fixed Point Method Solution of Example ?? . . . . . . . . . . 26
2.4 Fixed Point Method Solution of Example ?? . . . . . . . . . . 27
2.5 Newton’s Method Solution of Example ?? . . . . . . . . . . . 30
2.6 Newton’s Method Solution of Example ?? . . . . . . . . . . . 32
2.7 Secant Method Solution of Example ?? . . . . . . . . . . . . . 33
2.8 Newton’s and Accelerated Newton’s Methods Solutions of Ex-

ample ?? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Jacobi Iterative Solution of Example ?? . . . . . . . . . . . . . 70
3.2 Gauss-Siedel Iterative Solution of Example ?? . . . . . . . . . 73

2



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 5
1.1 Numerical Analysis: An Introduction . . . . . . . . . . . . . . . . . 5
1.2 Numbers Representation in Computer . . . . . . . . . . . . . . . . 6

1.2.1 Floating-Point Numbers . . . . . . . . . . . . . . . . . . . . 7
1.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Sources of Error in Numerical Computations . . . . . . . . 8
1.3.3 Floating Point Representation . . . . . . . . . . . . . . . . . 9
1.3.4 Absolute and Relative Errors . . . . . . . . . . . . . . . . . 9

1.4 Stable and Unstable Computations: Conditioning . . . . . . . . . . 11
1.5 Convergence and Order of Approximation . . . . . . . . . . . . . . 13
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Numerical Solutions of Nonlinear Equations 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Closed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Bisection Method . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 False-Position Method . . . . . . . . . . . . . . . . . . . . . 21

2.3 Open Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Fixed Point Method . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Secant Method . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Acceleration of Iterative Methods . . . . . . . . . . . . . . . . . . . 33
2.4.1 Modified Newton’s Methods . . . . . . . . . . . . . . . . . . 34

2.5 Computing Roots of Polynomials . . . . . . . . . . . . . . . . . . . 36
2.6 Numerical Solutions of Systems of Nonlinear Equations . . . . . . 36
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Solving Systems of Linear Equations 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Norms of Matrix and Vectors . . . . . . . . . . . . . . . . . . . . . 42
3.3 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3



CONTENTS

3.3.1 Backward Substitution Method . . . . . . . . . . . . . . . . 46
3.3.2 Forward Substitution Method . . . . . . . . . . . . . . . . . 49
3.3.3 Gaussian Elimination Method . . . . . . . . . . . . . . . . . 52
3.3.4 Gauss-Jordan Elimination Method . . . . . . . . . . . . . . 58

3.4 LU and Cholesky Factorisations . . . . . . . . . . . . . . . . . . . 61
3.5 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Jacobi Method . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.2 Gauss-Siedel Method . . . . . . . . . . . . . . . . . . . . . . 70

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Curve Fitting and Approximation Theory 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Linear Least Squares . . . . . . . . . . . . . . . . . . . . . . 75

5 Interpolation and Extrapolation 78
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Lagrange Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Newton’s Difference Interpolation Formula . . . . . . . . . . . . . . 82

5.3.1 Finite Divided Differences . . . . . . . . . . . . . . . . . . . 83
5.3.2 Newton’s Interpolation Divided Difference Formula . . . . . 85

5.4 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Linear Extrapolation . . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Polynomial Extrapolation . . . . . . . . . . . . . . . . . . . 87

5.5 Some Important MATLAB Functions in Numerical Analysis . . . . 88

6 Numerical Differentiation 96
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Numerical Integration 98
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Newton-Cotes Formulas of Integration . . . . . . . . . . . . . . . . 98

7.2.1 Closed Newton-Cotes Integration Rules . . . . . . . . . . . 98
7.2.2 Open Newton-Cotes Integration Rules . . . . . . . . . . . . 102

8 Numerical Solutions for Ordinary Differential Equations 105
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Taylor Series Method . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.3 Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.5 Midpoint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Mohammad Sabawi/Numerical Analysis



CONTENTS

Preface

The aim of these class notes is to cover the necessary materials in a stan-
dard numerical analysis course and it is not intended to add to the plethora
of Numerical Analysis texts. We tried our best to write these notes in con-
cise, clear and accessible way, to make them more attractive to the readers.
These lecture notes cover the basic and fundamental concepts and principles
in numerical analysis and it is not a comprehensive introduction to numerical
analysis. We emphasise in these notes on the mathematical principles via ex-
plaining them by the aid of numerical software MATLAB. The prerequisite
material for this course are a course in Calculus, Linear Algebra and Dif-
ferential Equations. A basic knowledge in MATLAB is helpful but it is not
necessary. There is a glut of numerical software nowadays, among these we
chose to use MATLAB because of its wide capabilities in scientific computing.

The notes contain sufficient material for a full year of study and can be
covered in two courses for undergraduate mathematics and engineering stu-
dents.These notes consist of eight chapters cover the basic and fundamental
topics in numerical analysis. Each chapter contains some relevant examples
to illustrate the concepts and ideas introduced in the chapter and ends with
a set of exercises address the topics covered in each chapter.
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Chapter 1

Introduction

1.1 Numerical Analysis: An Introduction

Numerical analysis is a branch of mathematics studies the methods and al-
gorithms which used for solving a variety of problems in different areas of
todays life such as mathematics, physics, engineering, medicine and social
and life sciences. The main objective of numerical analysis is investiga-
tion finding new mathematical approaches for approximating the underlying
problems, and also development of the current algorithms and numerical
schemes to make them more efficient and reliable. The advent of computers
revolutionise numerical analysis and nowadays with parallel and super com-
puters the numerical computations became more easier compared with the
past where solving simple problems take a long time, much effort and require
hard work. In principle, numerical analysis mainly focuses on the ideas of
stability, convergence, accuracy, consistency and error analysis. In the lit-
erature numerical analysis also known as scientific computing, scientific
computation, numerics, computational mathematics and numerical
mathematics. Numerical analysis can be divided into the following fields:

1. Numerical Solutions of Linear Algebraic Equations.

2. Numerical Solutions of Nonlinear Algebraic Equations.

3. Interpolation and Extrapolation.

4. Approximation Theory and Curve Fitting.

5. Numerical Differentiation.

6. Numerical Integration.
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CHAPTER 1. INTRODUCTION

7. Numerical Optimisation.

8. Numerical Solutions of Eigenvalue Problems.

9. Numerical Solutions of Ordinary Differential Equations.

10. Numerical Solutions of Partial Differential Equations.

11. Numerical Solutions of Integral Equations.

12. Numerical Modelling.

13. Numerical Simulation.

Numerical analysis is dated back to the Babylonians works in approxi-
mating the square root of 2. During this long journey of evolution many
many scientists contributed to its development and progress among these we
just name a few such as Lagrange, Gauss, Newton, Euler, Legendre
and Simpson.

1.2 Numbers Representation in Computer

Human beings do arithmetic in their daily life using the decimal (base 10)
number system. Nowadays, most computers use binary (base 2) number sys-
tem. We enter the information to computers using the decimal system but
computers translate them to the binary system by using the machine lan-
guage.

Definition 1 (Scientific Notation). Let k be a real number, then k can be
written in the following form

k = m× 10n,

where m is any real number and the exponent n is an integer. This notation is
called the scientific notation or scientific form and sometimes referred
to as standard form.

Example 1. Write the following numbers in scientific notation:

1. 0.00000834.

2. 25.45879.

3. 3400000.

4. 33.

5. 2, 300, 000, 000.

6. 2.718282.
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Solution:

1. 0.00000834 = 8.34× 10−6.

2. 25.45879 = 2.545879× 101.

3. 3400000 = 3.4× 106.

4. 33 = 3.3× 101.

5. 2.3× 109.

6. 2.718282 = 2.718282× 100.

1.2.1 Floating-Point Numbers

In the decimal system any real number a 6= 0 can be written in the nor-
malised decimal floating-point form in the following way

a = ±0.d1d2d3 · · · dkdk+1dk+2 · · · × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, (1.1)

for each i = 2, · · · , and n is an integer called the exponent (n can be
positive, negative or zero). In computers we use a finite number of digits in
representing the numbers and we obtain the following form

b = ±0.d1d2d3 · · · dk × 10n, 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9, (1.2)

for each i = 2, · · · , k. These numbers are called k-digit decimal ma-
chine numbers.

Also, the normalised floating-point decimal representation of the number
a 6= 0 can be written in other way as

a = ±r × 10n, (
1

10
≤ r < 1), (1.3)

the number r is called the normalised mantissa.

The floating-point representation in binary number system can be defined
by the same way as in the decimal number system. If a 6= 0, it can be
represented as

a = ±p× 2m, (
1

2
≤ p < 1), (1.4)

where p = (0.b1b2b3 · · · )2, b1 = 1.
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CHAPTER 1. INTRODUCTION

1.3 Errors

Occurrence of error is unavoidable in the field of scientific computing. In-
stead, numerical analysts try to investigate the possible and best ways to
minimise the error. The study of the error and how to estimate and min-
imise it are the fundamental issues in error analysis.

1.3.1 Error Analysis

In numerical analysis we approximate the exact solution of the problem by
using numerical method and consequently an error is committed. The numer-
ical error is the difference between the exact solution and the approximate
solution.

Definition 2 (Numerical Error). Let x be the exact solution of the under-
lying problem or a true value and x∗ its approximate solution or approximate
value, then the error (denoted by e) in solving this problem or in approximat-
ing the value of x is

e = x− x∗. (1.5)

1.3.2 Sources of Error in Numerical Computations

• Blunders (Gross Errors) These errors also called humans errors,
and are caused by humans mistakes and oversight and can be minimised
by taking care during scientific investigations. These errors will add to
the total error of the underlying problem and can significantly affect
the accuracy of solution.

• Modelling Errors These errors arise during the modelling process
when scientists ignore effecting factors in the model to simplify the
problem. Also, these errors known as formulation errors.

• Data Uncertainty These errors are due to the uncertainty of the
physical problem data and also known as data errors or noise.

• Discretisation Errors Computers represent a function of continuous
variable by a number of discrete values. Also, scientists approximate
and replace complex continuous problems by discrete ones and this
results in discretisation errors.

• Loss of Significance This phenomenon occurs when subtracting two
nearly equal numbers and can be avoided by using some mathematical
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CHAPTER 1. INTRODUCTION

tricks such as algebraic manipulation. It is also known as subtractive
cancellation, catastrophic cancellation or loss of significant dig-
its.

• Rounding Errors Computers represent numbers in finite number of
digits and hence some quantities cannot be represented exactly. The
error caused by replacing a number a by its closest machine number
is called the roundoff error or round-off error and the process is
called correct rounding. This type of error happens when a true
value of a real number x sometimes not stored or saved exactly due to
the limited fixed precision of computer’s representation.

• Chopping Errors These errors occur when chopping a number with
infinite digits or a number with k+1 digits and replaced it by a k−digits
number.

• Truncation Errors These errors arise when replacing complicated
mathematical expressions by simple and elementary mathematical for-
mulas. As an example of truncation error approximating a complicated
function with truncated Taylor series. We will discuss truncation error
in detailed way later.

1.3.3 Floating Point Representation

1.3.4 Absolute and Relative Errors

Definition 3 (Absolute Error). The absolute error ê of the error e is
defined as the absolute value of the error e

ê = |x− x∗|. (1.6)

Definition 4 (Relative Error). The relative error ẽ of the error e is defined
as the ratio between the absolute error ê and the absolute value of the true
value x

ẽ =
ê

|x|
=
|x− x∗|
|x|

, x 6= 0. (1.7)

Example 2. Let x = 3.141592653589793 is the value of the constant ratio π
correct to 15 decimal places and x∗ = 3.14159265 be an approximation of x.
Compute the following quantities:

a. The error.
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b. The absolute error.

c. The relative error.

Solution:

a. The error

e = x− x∗ = 3.141592653589793− 3.14159265 = 3.589792907376932e− 09

= 3.589792907376932× 10−9 = 0.000000003589792907376932.

b. The absolute error

ê = |x−x∗| = |3.141592653589793−3.14159265| = 3.589792907376932e−09.

c. The relative error

ẽ =
ê

|x|
=
|x− x∗|
|x|

=
3.141592653589793− 3.14159265

3.141592653589793

=
3.589792907376932e− 09

3.141592653589793
= 1.142666571770530e− 09.

Example 3. Approximate the following decimal numbers to three significant
digits by using rounding and chopping rules:

1. x1 = 1.34579.

2. x2 = 1.34679.

3. x3 = 1.34479.

4. x4 = 3.34379.

5. x5 = 2.34579.

6. x6 = 0.54387.

Solution:

(i) Rounding:

(a) x1 = 1.35.

(b) x2 = 1.35.

(c) x3 = 1.34.

(d) x4 = 3.34.

(e) x5 = 2.35.

(f) x6 = 0.544.

(ii) Chopping:

(a) x1 = 1.34.

(b) x2 = 1.34.

(c) x3 = 1.34.

(d) x4 = 3.34.

(e) x5 = 2.34.

(f) x6 = 0.543.
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CHAPTER 1. INTRODUCTION

1.4 Stable and Unstable Computations: Con-

ditioning

Stability is one of the most important characteristics in any efficient and
robust numerical scheme.

Definition 5 (Numerical Stability). The numerical algorithm or process
is called stable if the final result is relatively not affected by the perturba-
tions during computation process. In other words, the numerical method or
technique is stable if small changes in the initial conditions or initial data
will produce small changes in outputs or final results. Otherwise it is called
unstable.

The stability notion is analogous and closely related to the notion of
conditioning.

Definition 6 (Conditioning). Conditioning is a measure of how sensi-
tive the output to small changes in the input data. In literature condition-
ing is also called sensitivity.

• The problem is called well-conditioned or insensitive if small changes
in the input data lead to small changes in the output data.

• The problem is called ill-conditioned or sensitive if small changes
in the input data lead to big changes in the output data.

Definition 7 (Condition Number of a Function). If f is a differentiable
function at x in its domain then the condition number of f at x is

cond(f(x)) =
|xf ′(x)|
|f(x)|

, f(x) 6= 0. (1.8)

Note: Condition number of a function f at x in its domain sometimes
denoted by Cf (x).

Definition 8 (Condition Number of a Matrix). If A is a non-singular
n×m matrix, the condition number of A is defined by

cond(A) = ‖A‖‖A−1‖, (1.9)

where

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

, (1.10)

and x is a m× 1 column vector.
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Definition 9 (Well-Posed Problem). The problem is well-posed if sat-
isfies the following three conditions:

a. The solution exists.

b. The solution is unique.

c. The solution depends continuously on problem data.

Otherwise, the problem is called ill-posed.

Remark 1. Note that:

1. The problem is ill-posed or sensitive if cond� 1.

2. The problem is well-posed or insensitive if cond < 1.

Example 4. Find the condition number of the function f(x) =
√
x.

Solution:

f(x) =
√
x =⇒ f ′(x) =

1

2
√
x
, x 6= 0,

implies that

cond(f(x)) =
|xf ′(x)|
|f(x)|

=
| x
2
√
x
|

|
√
x|

=
1

2
.

This indicates that the small changes in the input data lead to changes in the
output data of half size the changes in the input data.

Example 5. Let

A =

 1 −1 1
1 0.5 3

0.1 1 0.3

 ,
the inverse of A can be computed by using MATLAB command inv(A) to
obtain

A−1 =

 4.7500 −2.1667 5.8333
0.5000 −0.3333 1.6667
−3.2500 1.8333 −4.1667

 .
Also, the condition number of A and its inverse can be computed using MAT-
LAB commands cond(A) and cond(inv(A)) to have cond(A) = 37.8704
and cond(A−1) = 37.8704. We notice that the matrix A and its inverse have
the same condition numbers.

Definition 10 (Accuracy). It is a measure of closeness of the approximate
solution to the exact solution.
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Definition 11 (Precision). It is a measure of closeness of the two or more
measurements to each other.

Remark 2. Note that the accuracy and precision are different and they are
not related. The problem maybe very accurate but imprecise and vice versa.

1.5 Convergence and Order of Approxima-

tion

Convergence of the numerical solution to the analytical solution is one of the
important characteristic in any good and reliable numerical scheme.

Definition 12 (Convergence of a Sequence). Let {an}∞n=1 be an infinite
sequence of real numbers. This sequence is said to be convergent to a real
number a (has a limit at a) if, for any ε > 0 there exists a positive integer
N(ε) such that

|an − a| < ε, whenever n > N(ε). (1.11)

Otherwise it is called a divergent sequence, a is called the limit of the
sequence an. Other commonly used notations for convergence are:

lim
n→∞

an = a or an → a as n, or lim
n→∞

(an − a) = 0, (1.12)

this means that the sequence {an}∞n=1 converges to a otherwise it di-
verges.

Definition 13 (Order of Convergence). Let the sequence {an}∞n=1 con-
verges to a and set en = an − a for any n > 0. If two positive constants M
and q exist, such that

lim
n→∞

|an+1 − a|
|an − a|q

= lim
n→∞

|en+1|
|en|q

= M, (1.13)

then the sequence {an}∞n=1 is to be convergent to a with the order of con-
vergence q, the number M is called the asymptotic error constant.

If q = 1, the convergence is called linear.
If q = 2, the convergence is called quadratic.
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If q = 3, the convergence is called cubic.

Note that the convergence gets more rapid as q gets larger and larger.

Example 6. Consider the sequence { 1
n
}∞n=1, where n is a positive integer.

Observe that 1
n
→ 0 as n→∞, it follows that

lim
n→∞

1

n
= 0.

Definition 14 (Order of Approximation O(hn)). The function f(h) is
said to be big Oh of the function g(h), if two real constants c, and C exist
such that

|f(h)| ≤ C|g(h)| whenever h < c, (1.14)

and denoted by f(h) = O(g(h)). The order of approximation is used to
determine the rate at which a function grows.

Example 7. Consider the functions f(x) = x + 1 and g(x) = x2, where
x ≥ 1. Observe that x ≤ x2 and 1 ≤ x2 for x ≥ 1, hence f(x) = x + 1 ≤
2x2 = 2g(x) for x ≥ 1. Consequently, f(x) = O(g(x)).
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Exercises

Exercise 1. Write the following numbers in scientific form:

1. 23.123.

2. 30, 000, 000.

3. 0.000001573.

4. 39776444.

5. −345.386443.

6. −23000000.

Exercise 2. Evaluate error, absolute error and relative error of the following
values and their approximations:

1. x = 1, 000, 000, x∗ = 999, 999.

2. y = 0.00012887765, y∗ = 0.00012897766.

3. z = 9776.96544, z∗ = 9775.66544.

Exercise 3. Approximate the following numbers to four digits using rounding
and chopping:

1. 1.98876.

2. 33.87654.

3. 8.98879.

4. 2.88778.

Exercise 4. Compute the condition number of the following functions:

1. f(x) = cos(x).

2. f(x) = cos−1(x).

.
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Chapter 2

Numerical Solutions of
Nonlinear Equations

2.1 Introduction

Nonlinear algebraic equations are wide spread in science and engineering
and therefore their solutions are important scientific applications. There are
a glut of numerical methods for solving these equations, and in these lec-
ture notes, we study the most commonly used ones such as bisection, secant
and Newton methods. Locating positions of roots of nonlinear equation is a
topic of great importance in numerical mathematical analysis. The problem
under consideration maybe has a root or has no root at all. The numer-
ical methods which are used to find the roots of nonlinear equations are
called root-finding algorithms or numerical methods for locating a
root. Iteration is an important and basic concept in both mathematics and
computer science, and has applications in physics and engineering. In these
notes we consider a class of methods called iterative methods or itera-
tion methods or recursive methods and as the name indicates a process
is repeated until an acceptable solution is obtained.

Definition 15 (Zero of a Function). Let f be a real or complex valued func-
tion of a real or complex variable x. A real or complex number r satisfies
f(r) = 0 is called zero of f or also called a root of equation f(r) = 0.

Definition 16 (Order of a Zero). Let f and its derivatives f ′, f ′′, · · · , f (M)

are continuous and defined on an interval about the zero x = r. The function
f or the equation f(x) = 0 is said to be has a zero or a root of order M ≥ 1
at x = r if and only if

f(r) = 0, f ′(r) = 0, f ′′(r) = 0, · · · , f (M−1)(r) = 0, f (M) 6= 0. (2.1)

17
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If M = 1 then r is called a simple zero or a simple root, and if M > 1 it
is called a multiple zero or a multiple root. A zero (root) of order M = 2
is called a double zero (root), and so on. Also, the zero (root) of order M
is called a zero (root) of multiplicity M .

Lemma 1. If the function f has a zero r of multiplicity M , then there exists
a continuous function h such that f can be factorised as

f(x) = (x− r)Mh(x), lim
x→r

h(x) 6= 0. (2.2)

Theorem 5 (Simple Zero Theorem). Assume that f ∈ C1[a, b]. Then, f has
a simple zero at r ∈ (a, b) if and only if f(r) = 0 and f ′(r) 6= 0.

Example 8. The function f(x) = x2 − 5x+ 6 = (x− 2)(x− 3) has two real
zeros r1 = 2 and r2 = 3, whereas the corresponding equation x2 − 5x + 6 =
(x − 2)(x − 3) = 0 has two real roots r1 = 2 and r2 = 3. According to the
Lemma 1, the function f is factorised to

f(x) = (x− 2)1(x− 3) or f(x) = (x− 3)1(x− 2)

Example 9. Show that the function f(x) = e2x − x2 − 2x− 1 has a zero of
multiplicity 2 (double zero) at x = 0.

Solution:

f(x) = e2x − x2 − 2x− 1, f ′(x) = 2e2x − 2x− 2, and f ′′(x) = 4e2x − 2.

Hence,

f(0) = e0−0−0−1 = 0, f ′(0) = 2e0−0−2 = 0, and f ′′(0) = 4e0−2 = 2 6= 0,

so, this implies that f ha s a double zero at x = 0.

2.2 Closed Methods

The basic idea of these methods is to find a closed interval [a, b] no mattar how
large such that it contains the root of the equation f(x) = 0 by stipulating
that f(a) and f(b) have opposite signs, and for this reasons they are called
closed methods. Also, these methods are known as bracketing methods.
Once the interval is determined an iterative process is started until we reach
a sufficiently small interval around the root for this reason these methods are
termed globally convergent methods.
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2.2.1 Bisection Method

It is a bracketing method used to find a zero of a continuous function f
on the initial interval [a, b] where a and b are real numbers, i.e. to find x
such that f(x) = 0, this method requires that f(a) and f(b) have different
signs. This method is based on the Intermediate Value Theorem, since f
is continuous and has opposite signs on [a, b] then there is a number r in
[a, b] such that f(r) = 0. This method is also known as Bolzano method
or bisection method of Bolzano or binary search method or interval
halving method. The first step in the solution process is to compute the
midpoint c = (a + b)/2 of the interval [a, b] and to proceed we consider the
three cases:

1. If f(a)f(c) < 0 then r lies in [a, c].

2. If f(c)f(b) < 0 then r lies in [c, b].

3. If f(c) = 0 then the root is c = r.

To begin, set a1 = a and b1 = b and let c1 = a1+b1
2

be the midpoint of the
interval [a1, b1] = [a, b].

• If f(c1) = 0 then the root is r = c1.

• If f(c1) 6= 0 then either f(a1)f(c1) < 0 or f(c1)f(b1) < 0.

(i). If f(a1)f(c1) < 0 then r lies in [a1, c1], and we squeeze the interval
form the right and set a2 = a1 and b2 = c1, i.e. [a2, b2] = [a1, c1].

(ii). If f(c1)f(b1) < 0 then r lies in [c1, b1], and and we squeeze the
interval form the left and set a2 = c1 and b2 = b1, i.e. [a2, b2] =
[c1, b1].

(iii). Compute c2 = a2+b2
2

the midpoint of the interval [a2, b2].

(iv). Then, we proceed in this way until we reach the nth interval [an, bn]
and then compute its midpoint cn = an+bn

2
.

• Finally, construct the interval [an+1, bn+1] which brackets the root and
its midpoint cn+1 = an++bn+1

2
will be an approximation to the root r.

In the bisection method the initial interval [a, b] is bisected and the inter-
val width is decreased by half each time until we reach an arbitrarily small
interval that brackets the root and we take the midpoint of this final interval
as a reasonable approximation of the root r.
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Remark 3. (a). The interval [an+1, bn+1] is wide as half as the interval [an, bn]
i.e. the width of each interval is as half as the width of the previ-
ous interval. Let {`n} be a sequence of widths of intervals [an, bn], i.e.
`n = bn−an

2
, n = 1, 2, · · · . Hence limn→∞ `n = 0, where ε is the preas-

signed value of the error (tolerance) i.e.

|rn+1 − rn| ≤ ε, n = 0, 1, · · · . (2.3)

(b). The sequence of left endpoints an, n = 1, 2, · · · , is increasing and the
sequence bn, n = 1, 2, · · · of right endpoints is decreasing i.e.

a0 ≤ a1 ≤ · · · ≤ an ≤ · · · ≤ r ≤ · · · ≤ bn ≤ · · · ≤ b1 ≤ b0. (2.4)

Theorem 6 (Bisection Method Theorem). Let f ∈ C[a, b] such that
f(a)f(b) < 0 and that there exists a number r ∈ [a, b] such that f(r) = 0,
and {cn} a sequence of the midpoints of intervals [an, bn] constructed by the
bisection method, then the error in approximating the root r in the nth step
is:

|en| = |r − cn| ≤
b− a
2n+1

, n = 0, 1, · · · . (2.5)

Hence, the sequence {cn} is convergent and its limit is the root r, i.e.

lim
n→∞

cn = r. (2.6)

The error bound in (2.5) can be used to evaluate the required predetermined
accuracy of the method.

Proof. For Proof see the References or have a look in any standard numerical
analysis text.

Remark 4. • The number N of repeated bisections required to compute
the nth approximation (midpoint) cn of the root r is:

N = int
( ln(b− a)− ln(ε)

ln(2)

)
. (2.7)

The formula (2.7) is obtained from the error bound formula (2.5).

• The width of the nth interval [an, bn] is:

|bn − an| =
|b0 − a0|

2n
. (2.8)
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Example 10. (a) Use bisection method to show that f(x) = x sin(x)−1 = 0
has a real root in [0.5, 1.5]. Compute eleven approximations (i.e. use
n = 10) to the root.

(b) Evaluate the number of computations N required to ensure that the error
is less than the preassigned value (error bound) ε = 0.001.

Solution:
(a) We start with initial interval [a0, b0] = [0.5, 1.5] and compute f(0.5) =
−0.76028723 and f(1.5) = 0.49624248. We notice that f(a0) and f(b0) have
opposite signs and hence, there is a root in the interval [0.5, 1.5]. Compute
the midpoint c0 = a0+b0

2
= 0.5+1.5

2
= 1 and f(1) = −0.15852902. The function

changes sign on [c0, b0] = [1, 1.5], so, we set [a1, b1] = [c0, b0] = [1, 1.5], and
compute the midpoint c1 = a1+b1

2
= 1+1.5

2
= 1.25 and f(1.25) = 0.18623077.

Hence, the root lies in the interval [a1, c1] = [1, 1.25]. Set [a2, b2] = [a1, c1] =
[1, 1.25] and continue until we compute c10 = 1.11376953125. The details are
explained in Table 2.1.

n Left Endpoint an Midpoint cn Right Endpoint bn Function Value f(cn)
0 0.5 1 1.5 −0.15852902
1 1 1.25 1.5 0.18623077
2 1 1.125 1.25 0.01505104
3 1 1.0625 1.125 −0.07182663
4 1.0625 1.09375 1.125 −0.02836172
5 1.09375 1.109375 1.125 −0.00664277
6 1.109375 1.1171875 1.125 0.00420803
7 1.109375 1.11328125 1.1171875 −0.00121649
8 1.11328125 1.115234375 1.1171875 0.00149600
9 1.11328125 1.1142578125 1.115234375 0.00013981
10 1.11328125 1.11376953125 1.1142578125 −0.00053832

Table 2.1: Bisection Method Solution of Example 10

(b)

N = int
( ln(1.5− 0.5)− ln(0.001)

ln(2)

)
= int

( ln(1)− ln(0.001)

ln(2)

)
=

int
(0− (−6.90775528)

0.69314718

)
= int

(6.90775528

0.69314718

)
= int(9.96578429) = 10.
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2.2.2 False-Position Method

It also known as regula falsi method, it is similar to the bisection method
in requiring that f(a) and f(b) have opposite signs. This method uses the
abscissa of the point (c, 0) at which the secant line called it SL joining the
points (a, f(a)) and (b, f(b)) crosses the x-axis instead of using the midpoint
of the interval as approximation of the zero of the function f as in the bisec-
tion method. To evaluate c, we need to compute the slope of line SL between
the two points (a, f(a)) and (b, f(b)):

m =
f(b)− f(a)

b− a
.

Now, compute the slope of line SL between the two points (c, f(c)) = (c, 0)
and (b, f(b)):

m =
f(b)− f(c)

b− c
=
f(b)− 0

b− c
=

f(b)

b− c
.

By equating the two slopes, we obtain

f(b)− f(a)

b− a
=

f(b)

b− c
=⇒ c = b− f(b)(b− a)

f(b)− f(a)
.

Now, we have the same possibilities as in the bisection method:

• If f(c0) = 0 then the root is r = c0.

• If f(c0) 6= 0 then either f(a0)f(c0) < 0 or f(c0)f(b0) < 0.

(i). If f(a0)f(c0) < 0 then r lies in [a0, c0], and set a1 = a0 and b1 = c0,
i.e. [a1, b1] = [a0, c0].

(ii). If f(c0)f(b0) < 0 then r lies in [c0, b0], and set a1 = c0 and b1 = b0,
i.e. [a1, b1] = [c0, b0].

(iii). Compute c1 = b1 − f(b1)(b1−a1)
f(b1)−f(a1) .

(iv). Then, we proceed in this way until we reach the nth interval [an, bn]

and then compute cn = bn − f(bn)(bn−an)
f(bn)−f(an) .

The general formula of the false-position method is

cn = bn −
f(bn)(bn − an)

f(bn)− f(an)
, n = 1, 2, · · · , (2.9)

start with an initial interval [a1, b1] = [a, b] such that f has opposite signs
on it, then the sequence {cn}∞n=1 of successive approximations of the root
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converges to the root r of the equation f(x) = 0. In general, the false-
position method is faster than the bisection method. Note that the interval
width bn − an is getting smaller as n gets larger but it is not necessarily to
approaches zero. For example, if the curve of the function y = f(x) is concave
near the point (r, 0) where the graph of the function crosses the x-axis, then
one of the endpoints of the interval is fixed and the other endpoint moves to
the root. The fixed endpoint is called the stagnant endpoint.

Example 11. Show that f(x) = 2x3− x2 + x− 1 = 0 has at least on root in
[0, 1].

Solution:
Since f(0) = −1 and f(1) = 1, then Intermediate Value Theorem implies that
this continuous function has a root in [0, 1]. Set [a0, b0] = [0, 1] and compute

c0 = b0 − f(b0)(b0−a0)
f(b0)−f(a0) = f(1) − f(1)(1−0)

f(1)−f(0) = 1 − 1(1−0)
1−(−1) = 0.5, also compute

f(c0) = f(0.5) = −0.5. Hence, the root lies in [c0, b0] we squeeze from the
left and set a1 = c0 = 0.5 and b1 = b0 = 1, to have [a1, b1] = [0.5, 1]. Now,

compute the new approximation to the root c1 = b1 − f(b1)(b1−a1)
f(b1)−f(a1) = f(1) −

f(1)(1−0.5)
f(1)−f(0.5) = 1 − 1(1−0.5)

1−(−0.5) = 2/3 ≈ 0.66666667, f(c1) = −0.18518519. The

function has opposite signs on the interval [c1, b1], set a2 = c1 = 0.66666667
and b2 = b1 = 1. so we have [a2, b2] = [0.66666667, 1]. Continue this we and
stop at c7 = 0.73895443.

n an cn bn f(cn)
0 0 0.5 1 −0.5
1 0.5 0.66666667 1 −0.18518519
2 0.66666667 0.71875000 1 −0.05523681
3 0.71875000 0.73347215 1 −0.01532051
4 0.73347215 0.73749388 1 −0.00416160
5 0.73749388 0.73858180 1 −0.00112399
6 0.73858180 0.73887530 1 −0.00030311
7 0.73887530 0.73895443 1 −0.00008171

Table 2.2: False Position Method Solution of Example 11

2.3 Open Methods

In these methods we do not need to have an interval around the root to
start solving the nonlinear equation f(x) = 0. We only need a sufficiently
closed approximation to the root hence, the name open methods or locally
convergent methods. The starting approximation is called the starting
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value, initial approximation, initial guess or a seed. The bracketing
methods are slow compared with open methods which are faster and have bet-
ter convergence properties. In this section we study the fixed-point method,
Newton’s method and the secant method as examples of open methods. In
the literature, the open methods are also known as slope methods since
these methods use the slope of the tangent line of the graph of the function
near the point (r, 0) to derive a mathematical formula for computing the next
iterations.

2.3.1 Fixed Point Method

It is an important and widely used method for finding the roots of nonlinear
problems. This method relies on the iteration principle. Iteration is a funda-
mental concept in computer sciences and numerical analysis and is used for
solving a wide variety of problems. Iteration and fixed point methods have
many applications in fractals (fractal geometry), chaos theory and dynami-
cal systems.There is a strong connection between root-finding problems and
fixed point problems, and in this section, we use fixed point problems to solve
root-finding problems.

Definition 17 (Fixed Point). The number r is called a fixed point of the
function g if r = g(r).

We start by transforming the root-finding problem f(x) = 0 to a fixed
point problem x = g(x) by algebraic manipulations. There are more than
one way of rearranging f(x) = 0 into an equivalent form x = g(x). Note that
if r is a zero of the function f ( i.e. r is a root of the equation f(r) = 0) then
r = g(r) i.e. r is a fixed point of the function g. Conversely, if g has a fixed
point at r then the function f(x) = x− g(x) has a zero at r. Geometrically,
the fixed points of a function y = g(x) are the points of intersection of its
curve with the straight line y = x.

Example 12. Find the fixed points of the function g(x) = 2− x2 and verify
that they are the solutions to the equation f(x) = x− g(x) = 0.

Solution : The fixed points of g are the points satisfying the fixed point
equation x = g(x), so intersect the graph of y = g(x) with the graph of the
straight line y = x

x = g(x) = 2− x2,

which implies that

−x2 − x+ 2 = −(x2 + x− 2) = −(x− 1)(x+ 2) = 0.
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So, either (x − 1) = 0 implies x = 1 or (x + 2) = 0 implies x = −2. Hence,
the fixed points are x = 1 and x = −2. We notice that these fixed points are
the same the zeros of f(x) = x−g(x) = −(x2 +x−2) = −(x−1)(x+2) = 0.

Definition 18 (Fixed Point Iteration). The iteration rn+1 = g(rn), n =
0, 1, · · · , obtained by using fixed point formula x = g(x) is called a fixed
point iteration or functional iteration. The numbers rn, n = 0, 1, · · · ,
are called iterates or iterations

In short, in the fixed point method we start with starting value r0 and
by using the repeated substitutions in the rule or function g(x) we compute
the successive or consecutive terms. For this reason the fixed-point method
sometimes is referred to as repeated substitution method.

Theorem 7 (Convergence of the Fixed Point Iteration). Let g is a
continuous function and {rn}∞n=0 is a sequence of iterates generated by the
fixed-point iteration rule rn+1 = g(rn), n = 0, 1, · · · . If the sequence {rn}∞n=0

is convergent and limn→∞ rn = r, then r is a fixed point of the function g(x).

Theorem 8 (Existence and Uniqueness of the Fixed Point). Assume
that g ∈ C[a, b].

1. If g(x) ∈ [a, b] for all x ∈ [a, b], then g has a at least one fixed point r
in [a, b].

2. If also, g′(x) existed and defined on (a, b) and there exists a positive
constant K < 1 such that |g′(x)| ≤ K < 1, for all x ∈ (a, b), then g
has a unique fixed point r in [a, b].

3. If g satisfies the conditions (1) and (2) , then for any number r0 in [a, b]
the sequence {rn}∞n=0 of iterations generated by fixed point iteration
rn+1 = g(rn), n = 0, 1, · · · , converges to the unique fixed point r in
[a, b].

Theorem 9 (Fixed Point Theorem). Assume that

(i) g, g′ ∈ C[a, b].

(ii) K is a positive constant.

(iii) r0 ∈ (a, b) is an initial approximation.

(iv) g(x) ∈ [a, b] for all x ∈ [a, b].
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1. If |g′(x)| ≤ K < 1 for all x ∈ (a, b), then the sequence of iterates
{rn}∞n=0 converges to the unique fixed point r ∈ [a, b] and r is called an
attractive fixed point.

2. If |g′(x)| > 1 for all x ∈ (a, b), then the sequence of iterates {rn}∞n=0

diverges and will not converge to the fixed point r ∈ [a, b] and r is called
a repelling fixed point and the iteration exhibits local divergence.

Corollary 1 (Fixed Point Iteration Error Bounds). If g satisfies the
hypotheses of Fixed Point Theorem, then the error bounds for approximating
r using rn are given by

|r − rn| ≤ Kn max |r − r0|, (2.10)

and

|r − rn| ≤
Kn

1−K
max |r1 − r0|, for all n ≥ 1. (2.11)

Example 13. Use the fixed point method to find the zero of the function
f(x) = x3 − 3x2 + 2 in [0, 2], start with r0 = 1.5.

Solution: There are many possibilities to write f(x) = 0 as a fixed point
form x = g(x) using mathematical manipulations.

(1) x = g1(x) = x− x3 + 3x2 − 2.

(2) x = g2(x) =
(

x3+2
3

)1/2
.

(3) x = g3(x) = −
(

x3+2
3

)1/2
.

(4) x = g4(x) =
(

2
3−x

)1/2
.

(5) x = g5(x) = −2
x
(
x−3
) .

(6) x = g6(x) =
(

3x2 − 2
)1/3

.

(7) x = g7(x) =
(

3x− 2
x

)1/2
.

For example, to obtain g1(x) just add x to both sides of the equation
−f(x) = 0 and this is the simplest way to write the problem as a fixed point
form

−f(x) = 0, −x3 + 3x2 − 2 = 0, so x = x− x3 + 3x2 − 2 = g1(x).

Also, g2(x) and g3(x) can be obtained as follows:

x3 − 3x2 + 2 = 0, so 3x2 = x3 + 2, and x2 =
x3 + 2

3
,
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implies that

x = ±
(x3 + 2

3

)1/2
, so g2(x) =

(x3 + 2

3

)1/2
, and g3(x) = −

(x3 + 2

3

)1/2
.

Note that it is important to check that the fixed point of each derived function
g is a solution to the problem f(x) = 0. For example, because the solution is
positive and lies between 0 and 2, so we choose the positive function g2(x),
since the negative function g3(x) is not a choice here. The results are outlined
in Tables 2.3 and 2.4 below.

n g1(x) g2(x) g3(x) g4(x) g5(x)
0 1.5 1.5 1.5 1.5 1.5
1 2.875 1.33853153 −1.33853153 1.15470054 0.88888889
2 1.90820313 1.21081272 0− 0.36i 1.04107393 1.06578947
3 3.88369668 1.12177435 1.01042940 0.97018561
4 −11.44518863 1.06639827 1.00261759 1.01559099
5 1.8788e+ 03 1.03484519 1.00065504 0.99238449
6 −6.6210e+ 09 1.01787695 1.00016380 1.00385153
7 2.9025e+ 29 1.00905819 1.00004095 0.99808533
8 1.00455985 1.00001024 1.00096009
9 1.00228772 1.00000256 0.99952065
10 1.00114582 1.00000064 1.00023985
11 1.00057340 1.00000016 0.99988012
12 1.00000004 1.00005995
13 1.00000001 0.99997003
14 1.00000000 1.00001499
15 0.99999251
16 1.00000375
17 0.99999813
18 1.00000094
19 0.99999953
20 1.00000024
21 0.99999988

Table 2.3: Fixed Point Method Solution of Example 13
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n g6(x) g7(x)
0 1.5 1.5
1 1.68098770 1.77951304
2 1.86406700 2.05295790
3 2.03474597 2.27698696
4 2.18422416 2.43979654
5 2.30913228 2.54944095
6 2.40992853 2.61989258
7 2.48919424 2.66388582
8 2.55035309 2.69088731
9 2.59688496 2.70728880
10 2.63192563 2.71718971
11 2.65811433 2.72314423
12 2.67757909 2.72671736
13 2.69198765 2.72885862
14 2.70262171 2.73014079
15 2.71045296 2.73090817
16 2.71621092 2.73136731
17 2.72043954 2.73164198
18 2.72354236 2.73180628
19 2.72581768 2.73190456
20 2.72748542 2.73196334
21 2.72870741 2.73199849

Table 2.4: Fixed Point Method Solution of Example 13

Remark 5. • The sequence of iterations {rn}∞n=0 generated by the fixed-
point iteration rule rn+1 = g(rn), n = 0, 1, · · · is either convergent or
divergent.

• If the sequence of iterations is divergent, then we may have different
types of divergence behaviour such as monotone or oscillating or
cyclic(repeated).

• If the sequence of iterations is convergent, it may converge to another
fixed point not the one we are interested in (may be it is not in the
problem domain or domain of interest of the function g).

• If the sequence of iterations is convergent, the convergence may be
monotone or oscillating.

• Note that the Fixed Point Theorem does not explain what is the case
if |g′(x)| = 1. In this case, the sequence of iterations also is either
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convergent or divergent and this depends on the closeness of the starting
value r0 to the fixed point r.

2.3.2 Newton’s Method

Newton’s method is also known as Newton-Raphson method is one of
the most powerful and efficient numerical methods for root-finding problems.
It is well-known and popular method and there are several variants and
extensions of this method. There are more than one approach for deriving
this method such as the graphical technique and Taylor series technique, and
here we use both of them, we start with Taylor series approach. Let f, f

′
, f
′′

are continuous functions on the interval [a.b] (i.e. f ∈ C2[a, b]). Let r0 ∈ [a, b]
be an approximation to the zero r of the function f such that f

′
(r0) 6= 0 and

r0 is “sufficiently close to r i.e. |r − r0| is relatively small”. Let’s start with
first Taylor polynomial of f(x) expanded about the initial approximation r0
and compute it at x = r:

f(r) = f(r0) + (r − r0)f
′
(r0) +

(r − r0)2

2
f
′′
(ξ(r)),

where ξ(r) lies between r0 and r. Using the fact that f(r) = 0, this leads to

0 = f(r0) + (r − r0)f
′
(r0) +

(r − r0)2

2
f
′′
(ξ(r)).

Since |r − r0| is small then (r − r0)2 is much smaller, so we can neglect the
third term in Taylor’s expansion which contains this term (quadratic power
term) to have

0 = f(r0) + (r − r0)f
′
(r0).

Solving for r yields

r = r0 −
f(r0)

f ′(r0)
.

To, proceed, set r = r1 in the Newton’s formula to compute r1 by using the
known value r0

r1 = r0 −
f(r0)

f ′(r0)
,

and then we compute r2 using the known value r1

r2 = r1 −
f(r1)

f ′(r1)
,
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and by following the same fashion, we compute r3, r4 and so on. The general
or nth form of Newton’s method is:

rn = rn−1 −
f(rn−1)

f ′(rn−1)
, n = 1, 2, · · · . (2.12)

This is called Newton’s formula or Newton-Raphson formula.

The graphical approach: Let r0 be an initial guess of the solution r of
the equation f(x) = 0, then the curve of the function f crosses the x-axis at
the point (r, 0). The point (r0, f(r0) lies on the curve near the point (r, 0).
The tangent line to the curve of f at the point (r0, f(r0) intersects the x-
axis at the point (r1, 0), then r1 is the new approximation of the root and is
closer to the root than r0. The slope of the tangent line L joining the points
(r0, f(r0) and (r1, 0) is:

m =
0− f(r0)

r1 − r0
, (2.13)

and also, we have

m = f
′
(r0). (2.14)

Equating the two slopes in (2.13) and (2.14), we get

f
′
(r0) =

−f(r0)

r1 − r0
, (2.15)

solving for the new approximation r1 we have

r1 = r0 −
f(r0)

f ′(r0)
. (2.16)

By iterating (2.16), we obtain the Newton’s formula in (2.12).

Theorem 10 (Convergence of the Newton’s Method). Assume that the
sequence of approximations {rn}∞n=1 of the root of the nonlinear equation
(x) = 0 produced by the Newton’s iterative formula (2.12) converges to the
root r. Then, if r is a simple root, the convergence is quadratic and the error
bound is:

|En| = |rn − rn−1| ≈
f
′′
(r)

2f ′(r)
|En−1|2, for sufficiently large n. (2.17)
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If r is a multiple root of order M > 1, then the convergence is linear and the
error bound is:

|En| = |rn − rn−1| ≈
M − 1

M
|En−1|, for sufficiently large n. (2.18)

Note that the asymptotic error constants in the case of quadratic and

linear convergence are A = f
′′
(r)

2f ′ (r)
and A = M−1

M
, respectively.

Example 14. Use Newton’s method to find the positive root accurate to
within 10−5 for f(x) = 3x− ex = 0. Start with the initial guess r0 = 1.5.

Solution: Start by finding the derivative of f(x):

f(x) = 3x−ex, f ′(x) = 3−ex, r0 = 1.5, f(r0) = 0.01831093, f
′
(r0) = −1.48168907,

so, the Newton-Raphson iteration formula for this problem is:

rn = rn−1 −
f(rn−1)

f ′(rn−1)
= rn−1 −

3rn−1 − ern−1

3− ern−1
, n = 1, 2, · · · , .

Computing r1 by using the known value r0,

r1 = r0 −
f(r0)

f ′(r0)
= r0 −

3r0 − er0
3− er0

= 1.5− 3(1.5)− e1.5

3− e1.5
= 1.51235815.

Now, compute f(r1) and f
′
(r1),

f(r1) = 3r1 − er1 = −0.00034364, f
′
(r1) = 3− er1 = −1.53741808.

Next, we compute r2,

r2 = r1−
f(r1)

f ′(r1)
= r1−

3r1 − er1
3− er1

= 1.51213463, f(r2) = −1.1e−07, f
′
(r2) = −1.53640399.

A summary of the computations is given in Table 2.5.

n rn f(rn) f ′(rn)
0 1.50000000 0.01831093 −1.48168907
1 1.51235815 −0.00034364 −1.53741808
2 1.51213463 −0.00000011 −1.53640399
3 1.51213455 −0.00000000 −1.53640365
4 1.51213455 0 −1.53640365

Table 2.5: Newton’s Method Solution of Example 14
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Remark 6. One of the main drawbacks of the Newton’s method is the pos-
sibility of division by zero when f

′
(rn−1) = 0 in (2.12). In this case as a

remedy we compute f(rn−1) and if it is sufficiently close to zero, then we
consider rn−1 is a reasonable approximation to the root r. Also, we have
another problem when f

′
(rn−1) ≈ 0, i.e. when the tangent line to the curve

of f at the point (rn−1, f(rn−1)) is nearly horizontal, then dividing by a very
small number results in meaningless computations.

Newton’s Method for Finding the nth Roots

We start with square roots. Let B > 0 a real number and r0 be an initial
approximation to

√
B. Our goal is to find a square root of a number B. Let

x =
√
B, so x2 = B, which implies that x2−B = 0, define f(x) = x2−B = 0.

Note that this equation has two roots x = ±
√
B. Now, find the derivative

of f , f ′(x) = 2x and use the Newton’s fixed point formula

x = g(x) = x− f(x)

f ′(x)
= x− x2 −B

2x
=
x2 +B

2x
=
x+ B

x

2
.

Now, using Newton’s iteration formula

rn+1 =
rn + B

rn

2
, n = 0, 1, · · · .

The sequence of iterations {rn}∞n=0 converges to
√
B. Note that in computing

the square root of B, we do not need to evaluate f and f ′ and this makes
the calculations easier and faster since we just need the values of the iterates
rn, n = 0, 1, · · · .

Example 15. Use Newton’s square-root algorithm to find
√

3, use r0 = 1.

Solution: Starting with r0 = 1 when n = 0, we have

r1 =
r0 + 3

r0

2
=

1 + 3

2
= 2.

For n = 1,

r2 =
r1 + 3

r1

2
=

2 + 3
2

2
= 1.75.

n = 2, r3 =
r2 + 3

r2

2
=

1.75 + 3
1.75

2
= 1.732142857142857.

n = 3, r4 =
r3 + 3

r3

2
= 1.732050810014727.

A summary of results is given in Table 2.6
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n rn
0 1
1 2
2 1.75
3 1.732142857142857
4 1.732050810014727
5 1.732050807568877
6 1.732050807568877

Table 2.6: Newton’s Method Solution of Example 15

2.3.3 Secant Method

Newton’s method is a very powerful and efficient technique for solving root-
finding problems but one of the drawbacks of the method is the need of
derivative evaluations of f at the approximations rn, n ≥ 0, and this is not a
trivial task. To avoid this we introduce secant method which is a variation
of Newton’s method. Secant method is similar to the false position method
but it differs in the way of choosing the succeeding terms.We start with two
initial points (r0, f(r0)) and (r1, f(r1)) near the point (r, 0), where r is the
root of equation f(x) = 0. Define the point (r2, 0) to be the point of intersec-
tion of the secant line joining the points (r0, f(r0)) and (r1, f(r1)) with the
x-axis. Geometrically, the abscissa of the point of intersection r2 is closer to
the root r than to either r0 and r1.

The slope of the secant line relating these three points (r0, f(r0)), (r1, f(r1))
and (r2, f(r2)) is:

m =
f(r1)− f(r0)

r1 − r0
and m =

f(r2)− f(r1)

r2 − r1
=

0− f(r1)

r2 − r1
=
−f(r1)

r2 − r1
.

Equating the two values of the slope, we have

f(r1)− f(r0)

r1 − r0
=
−f(r1)

r2 − r1
.

Solving slope’s equation for r2, we obtain

r2 = r1 −
f(r1)(r1 − r0)
f(r1)− f(r0)

.

So, the general form of the secant method is:

rn+2 = rn+1 −
f(rn+1)(rn+1 − rn)

f(rn+1)− f(rn)
, n = 0, 1, · · · , .

33 Mohammad Sabawi/Numerical Analysis



CHAPTER 2. NUMERICAL SOLUTIONS OF NONLINEAR
EQUATIONS

Example 16. Find the root of equation x − cos(x) = 0 using the secant
method and the two initial guesses r0 = 0.5 and r1 = 0.6.

Solution: To compute the first approximation r2, we need to compute f(r0)
and f(r1)

f(r0) = f(0.5) = 0.5− cos(0.5) = −0.377582560000000,

f(r1) = f(0.6) = 0.6− cos(0.6) = −0.225335610000000.

So,

r2 = r1 −
f(r1)(r1 − r0)
f(r1)− f(r0)

= 0.6− f(0.6)(0.6− 0.5)

f(0.6)− f(0.5)
= 0.748006655882730,

f(r2) = r2 − cos(r2) = 0.014960500949714.

Now, we compute the next approximation r3,

r3 = r2−
f(r2)(r2 − r1)
f(r2)− f(r1)

= 0.738791967963291, f(r3) = −0.000490613128583.

Continuing until satisfying the required accuracy. A summary of the calcu-
lations is given in Table 2.7.

n rn f(rn)
0 0.500000000000000 −0.377582560000000
1 0.600000000000000 −0.225335610000000
2 0.748006655882730 0.014960500949714
3 0.738791967963291 −0.000490613128583
4 0.739084558312839 −0.000000962163319
5 0.739085133252381 0.000000000062293
6 0.739085133215161 0
7 0.739085133215161 0

Table 2.7: Secant Method Solution of Example 16

2.4 Acceleration of Iterative Methods

The linear convergence a sequence {rn} to the limit r such as the sequences
of the fixed point iterations can be accelerated by using some techniques such
as Aitken’s ∆2 method (Aitken’s acceleration) and Steffensen’s method. For
more details see references [4, 16] and the references therein.
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2.4.1 Modified Newton’s Methods

Newton’s method is a fixed point method since it can be written as

x = g(x) = x− f(x)

f ′(x)
,

and in iterative way

rn = g(rn−1) = rn−1 −
f(rn−1)

f ′(rn−1)
, n = 1, 2, · · · ,

and this is called Newton-Raphson iteration formula or simply New-
ton’s iteration. The convergence of Newton’s method can be modified to
accelerate its rate of convergence at the root x = r of order M > 1

rn = rn−1 −
f(rn−1)f

′(rn−1)

(f ′(rn−1))2 − f(rn−1)f ′′(rn−1)
, n = 1, 2, · · · .

This formula is called a modified Newton’s method.

Also, Newton’s method can be accelerated in an another way.

Theorem 11 (Acceleration of Newton’s Iteration). Assume that Newton’s
method produces a linearly convergent sequence to the root x = r of order
M > 1. Then Newton’s iteration formula

rn = rn−1 −
Mf(rn−1)

f ′(rn−1)
, n = 1, 2, · · · ,

produces a quadratically convergent sequence {rn}∞n=0 to the root x = r.

Example 17. Show that r = 1 is a double zero (double root) of f(x) =
−x3 + 3x− 2 = 0. Start with r0 = 1.25 as an initial guess of r and compare
the performance of Newton’s method and accelerated Newton’s method for
solving f(x) = 0.

Solution : Since r = 1 is a double root then M = 2, so the accelerated
Newton’s method becomes

rn = rn−1 −
2f(rn−1)

f ′(rn−1)
= rn−1 −

2(−r3n−1 + 3rn−1 − 2)

−3r2n−1 + 3
, n = 1, 2, · · · ,

or

rn = rn−1 −
−2r3n−1 + 6rn−1 − 4

−3r2n−1 + 3
, n = 1, 2, · · · .
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Start by computing r1

r1 = r0 −
−2r30 + 6r0 − 4

−3r20 + 3
= 1.25− −2(1.25)3 + 6(1.25)− 4

−3(1.25)2 + 3
= 1.00925926.

Table 2.8 compares the performance of both methods.

n Newton’s Method Accelerated Newton’s Method
0 1.25 1.25
1 1.12962963 1.00925926
2 1.06612990 1.00001422
3 1.03341772 1.00001422
4 1.01680039 1.00000000
5 1.00842352
6 1.00421765
7 1.00211030
8 1.00105552
9 1.00052785
10 1.00026395
11 1.00013198
12 1.00006599
13 1.00003300
14 1.00001650
15 1.00000825
16 1.00000413
17 1.00000207
18 1.00000104
19 1.00000052
20 1.00000026
21 1.00000013
22 1.00000007
23 1.00000004
24 1.00000002
24 1.00000001
25 1.00000001

Table 2.8: Newton’s and Accelerated Newton’s Methods Solutions of Exam-
ple 17
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2.5 Computing Roots of Polynomials

Computing roots of polynomials has important applications in different areas
of mathematics and other sciences.

Definition 19 (nth Degree Polynomial). A polynomial of degree n has the
general form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where the coefficients ai, i = 0, 1, · · · , n, are real numbers (constants) and
an 6= 0. The nth degree polynomial P (x) is sometimes referred to as Pn(x),
and also named algebraic polynomial.

Note that the zero function P (x) = 0 is a polynomial but has no de-
gree.There are several techniques for finding zeros of polynomials in the liter-
ature such as Müller method, Laguerre’s method, Bairstow method,
Brent’s method and Jenkins-Traub method, and these methods are
beyond the scope of this lecture notes and interested readers can see the
references.

2.6 Numerical Solutions of Systems of Non-

linear Equations

Some phenomena in nature are modelled by systems of N nonlinear equa-
tions in N unknowns. These systems can be handled firstly by linearising
them and then solving them in repeated way. Newton’s method for a single
nonlinear equation follows the same approach and can be easily extended for
solving a system of nonlinear equations.

The general form of a system of N nonlinear equations in N unknowns
xi is:

f1(x1, x2, · · · , xN) = 0

f2(x1, x2, · · · , xN) = 0
...

fN(x1, x2, · · · , xN) = 0.

Using vector notation, this system can be written in this concise form
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F (X) = 0,

where

F = [f1, f2, · · · , fN ]T

X = [x1, x2, · · · , xN ]T .

Newton’s formula for a single nonlinear equation can be extended to a
system of nonlinear equations in the following form

X(k+1) = X(k) − [F
′
(X(k))]−1F (X(k)),

where F
′
(X(k)) is the Jacobian matrix which will be defined below. It

contains the partial derivatives of F evaluated atX(k) = [x
(k)
1 , x

(k)
2 , · · · , x(k)N ]T .

The above-mentioned formula is similar to the Newton’s formula for a single
nonlinear equation except that the derivative appeared in the numerator as
an inverse of the Jacobian matrix. In practice, the inverse will not be com-
puted since this is impractical because its computational cost and instead we
will solve a related linear system.

The method will explained by solving a system of three nonlinear equa-
tions

f1(x1, x2, x3) = 0

f2(x1, x2, x3) = 0

f3(x1, x2, x3) = 0.

The Taylor series expansion in three variables x1, x2, x3:

fi(x1 + h1, x2 + h2, x3 + h3) = fi(x1, x2, x3) + h1
∂fi
∂x1

+ h2
∂fi
∂x2

+ h3
∂fi
∂x3

+ · · · ,

where the partial derivatives are evaluated at the point (x1, x2, x3). We
consider just the linear terms in step sizes hi for i = 1, 2, 3. Assume that we
have in vector notation

0 ≈ F (X(0) +H(0)) ≈ F (X(0)) + F
′
(X(0))H(0),

where F
′
(X(0)) is the Jacobian matrix at the initial guessX(0) = (x01, x

0
2, x

0
3),
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F
′
(X(0)) =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 ,
where the partial derivatives are evaluated as follows:

∂fi
∂xj

=
∂fi(X

(0))

∂xj
, i, j = 1, 2, 3.

If the Jacobian matrix F
′
(X(0)) is non singular i.e its inverse is existed, then

solving for H, we find

H(0) = −[F
′
(X(0))]−1F (X(0)).

The next iteration after correction X(1) = X(0) + H(0) is closer to the root
than X(0). Hence, Newton’s formula for the first iteration is

X(1) = X(0) − [F
′
(X(0))]−1F (X(0)).

Consequently, the general form of Newton’s method for solving the non-
linear system is:

X(k+1) = X(k) − [F
′
(X(k))]−1F (X(k)), k = 0, 1, ... .

To avoid computing the inverse of the Jacobian matrix at each iteration,
we instead resort to solving the Jacobian linear systems

[F
′
(X(k))]H(k) = −F (X(k)), k = 0, 1, ... ,

Hence, the next Newton’s iteration is computed using the formula

X(k+1) = X(k) +H(k), k = 0, 1, ... .
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Example 18. Solve the following nonlinear system using Newton’s method.
Start with the initial guess X(0) = (x01 = 1, x02 = 0, x03 = 0). The exact
solution to this system is X = (x1 = 0, x2 = 1, x3 = 1).

x1 + x2 + x3 = 2

x21 + x22 + x23 = 2

ex1 + x1x2 − x1x3 = 1.

Solution: We compute the Jacobian matrix

F
′
(X) =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 =

 1 1 1
2x1 2x2 2x3

ex1 + x2 − x3 x1 −x1

 .
The Jacobian matrix at the initial guess X(0)

F
′
(X(0)) =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 =

 1 1 1
2x01 2x02 2x03

ex
(0)
1 + x

(0)
2 − x

(0)
3 x

(0)
1 −x(0)1

 =

 1 1 1
2 0 0
e1 1 −1

 .
Now, solving the Jacobian linear system for H(0)

[F
′
(X(0))]H(0) = −F (X(0)),

we get

 1 1 1
2 0 0
e1 1 −1

h01h02
h03

 = −

 −1
−1

e1 − 1

 ,
implies that

H(0) =

 0.5000
−1.2887
1.7887

 .
Hence,

X(1) = X(0) +H(0) =

1
0
0

+

 0.5000
−1.2887
1.7887

 =

 1.5000
−1.2887
1.7887

 .
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Now, compute the Jacobian matrix for X(1).

F
′
(X(1)) =

 1 1 1
2x11 2x12 2x13

ex
(1)
1 + x

(1)
2 − x

(1)
3 x

(1)
1 −x(1)1

 =

1.0000 1.0000 1.0000
3.0000 −2.5774 3.5774
1.4043 1.5000 −1.5000

 .

F (X(1)) =

f1(x1, x2, x3)f2(x1, x2, x3)
f3(x1, x2, x3)

 =

 0
5.1102
−1.1344

 .
Solving for H(1), we have

1.0000 1.0000 1.0000
3.0000 −2.5774 3.5774
1.4043 1.5000 −1.5000

h11h12
h13

 = −

 0
5.1102
−1.1344

 ,
implies

H(1) =

−0.5172
0.8788
−0.3616

 .
The next approximation is

X(2) = X(1) +H(1) =

 1.5000
−1.2887
1.7887

+

−0.5172
0.8788
−0.3616

 =

 0.9828
−0.4099
1.4271

 .
Continuing as before, until we reach the required results.

Remark 7 (Hybrid Methods). The global methods are guaranteed to con-
verge to the root of the problem if given an initial interval such that the
function changes sign on this interval, but these methods are slow and have
linear convergence rates. The local methods are faster but it is not guaranteed
to converge to the root unless we start sufficiently close to the root, and these
methods have higher order convergence rates. Hence, to make balance between
the good features in both methods, there are some methods start few steps with
closed methods to guarantee the convergence and then move to open methods
to speed up the convergence, these methods are called the hybrid methods.
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Exercises

Exercise 12. Solve Example 11 using the bisection method and compare the
solution with false position method’s solution of the same problem.

Exercise 13. Repeat solving Example 10 using the false position method and
compare the results with the solution of the bisection method for the same
problem.

Exercise 14. Find the solution to the equation ex−x−1 = 0 accurate to six
decimal places (i.e. ε = 0.0000001) using Newton’s and modified Newton’s
methods. Start with r0 = 0.6. Compare the results of both methods.

Exercise 15. Use the secant method to find the solution accurate to within
10−5 to the following problem x sin(x)− 1 = 0, 0 ≤ x ≤ 2.

Exercise 16. Use the fixed point method to locate the root of f(x) = x−e−x =
0, start with an initial guess of x = 0.1.

Exercise 17. Let f(x) = x2 − 5 and r0 = 1.5. Use bisection, false position,
secant, fixed point, Newton’s and modified Newton’s methods to find r7 the
approximation to the positive root r =

√
5.

Exercise 18. Use modified (accelerated) Newton’s method to solve the equa-
tion x2 − 3x− 1 = 0 in the interval [−1, 1].
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Chapter 3

Solving Systems of Linear
Equations

3.1 Introduction

Many phenomena and relationships in nature and real life applications are
linear, meaning that results and their causes are proportional to each other.
Solving linear algebraic equations is a topic of great importance in numerical
analysis and other scientific disciplines such as engineering and physics. So-
lutions to Many problems reduced to solve a system of linear equations. For
example, in finite element analysis a solution of a partial differential equation
is reduced to solve a system of linear equations.

3.2 Norms of Matrix and Vectors

In error and convergence analyses we need a measure to determine the dis-
tance (difference) between the exact solution and approximate solution or to
determine the differences between consecutive approximations.

Definition 20 (Vector Norm). A vector norm is a real-valued function
‖.‖ : Rn → R satisfies the following conditions:

(i) ‖x‖ ≥ 0 for all x ∈ Rn.

(ii) ‖x‖ = 0 if and only if x = 0 for all x ∈ Rn.

(iii) ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ Rn.

(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rn (Triangle Inequality).

43



CHAPTER 3. SOLVING SYSTEMS OF LINEAR EQUATIONS

Definition 21 (l1 Vector Norm). Let x = (x1, x2, · · · , xn)′. Then the l1
norm for the vector x is defined by

‖x‖1 =
n∑

i=1

|xi|.

Definition 22 (Euclidean Vector Norm). Let x = (x1, x2, · · · , xn)′. Then
the Euclidean norm (l2 norm) for the vector x is defined by

‖x‖2 =
( n∑

i=1

x2i

)1/2
.

Definition 23 (Maximum Vector Norm). Let x = (x1, x2, · · · , xn)′. Then
the maximum norm (l∞ norm) for the vector x is defined by

‖x‖∞ = max
1≤i≤n

|xi|.

Remark 8. Note that when n = 1 both norms reduce to the absolute value
function of real numbers.

Example 19. Determine the l1 norm, l2 norm and l∞ norm of the vector
x = (1, 0,−1, 2, 3)′.

Solution: The required norms of vector x = (1, 0,−1, 2, 3)′ in R5 are:

‖x‖1 =
5∑

i=1

|xi| = |x1|+ |x2|+ |x3|+ |x4|+ |x5| = |1|+ |0|+ |−1|+ |2|+ |3| = 7,

‖x‖2 =
( 5∑

i=1

x2i

)1/2
=
(
x21 + x22 + x23 + x24 + x25

)1/2
=

(
(1)2 + (0)2 + (−1)2 + (2)2 + (3)2

)1/2
=
(

15
)1/2

,

and

‖x‖∞ = max
1≤i≤5

|xi| = max{|x1|, |x2|, |x3|, |x4|, |x5|}

= max{|1|, |0|, | − 1|, |2|, |3|} = 3.
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Definition 24 (Matrix Norm). A matrix norm is a real-valued function
‖.‖ : Rn×m → R satisfies the following conditions:

(i) ‖A‖ ≥ 0 for all A ∈ Rn×m.

(ii) ‖A‖ = 0 if and only if A = 0 for all A ∈ Rn×m.

(iii) ‖αA‖ = |α|‖A‖ for all α ∈ R and A ∈ Rn×m.

(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Rn×m (Triangle Inequality).

If matrix norm is related to a vector norm, then we have two additional
properties:

(v) ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ Rn×m.

(vi) ‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Rn×m and x ∈ Rn.

We give here some equivalent definitions of the matrix norm particularly
when matrix norm is related to the vector norm.

Definition 25 (Subordinate Matrix Norm). Let A is a n × n matrix and
x ∈ Rn, then the subordinate matrix norm is defined by

‖A‖ = sup{‖Ax‖ : x ∈ Rnand ‖x‖ = 1}.

or, alternatively
‖A‖ = max

‖x‖=1
‖Ax‖.

Definition 26 (Natural Matrix Norm). Let A is a n×n matrix and for any
z 6= 0, and x = z

‖z‖ is the unit vector. Then the natural / reduced matrix
norm is defined by

max
‖x‖=1

‖Ax‖ = max
z 6=0

∥∥∥A( z

‖z‖

)∥∥∥ = max
z 6=0

‖Az‖
‖z‖

,

or, alternatively

‖A‖ = max
z 6=0

‖Az‖
‖z‖

.

Definition 27 (l1 Matrix Norm). Let A is a n×n matrix and x = (x1, x2, · · · , xn)′.
Then the l1 matrix norm is defined by

‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
1≤i≤n

n∑
i=1

|aij|.
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Definition 28 (Spectral Matrix Norm). Let A is a n × n matrix and x =
(x1, x2, · · · , xn)′. Then the spectral / l2-matrix norm is defined by

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
1≤i≤n

√
|σmax|,

where σi are the eigenvalues of ATA, which are called the singular values of
A and the largest eigenvalue in absolute value (|σmax|) is called the spectral
radius of A.

Definition 29 (l∞ Matrix Norm). Let A is a n×n matrix and x = (x1, x2, · · · , xn)′.
Then the l∞ (maximum)matrix norm is defined by

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
1≤i≤n

n∑
j=1

|aij|.

Remark 9. Note that ‖I‖ = 1.

Example 20. Determine ‖A‖∞ for the matrix

A =

 1 −1 2
0 5 3
−1 6 −4

 .
Solution: For i = 1, we have

3∑
j=1

|a1j| = |a11|+ |a12|+ |a13| = |1|+ | − 1|+ |2| = 4,

and for i = 2, we obtain

3∑
j=1

|a2j| = |a21|+ |a22|+ |a23| = |0|+ |5|+ |3| = 8,

for i = 3, we get

3∑
j=1

|a3j| = |a31|+ |a32|+ |a33| = | − 1|+ |6|+ | − 4| = 11.

Consequently,

‖A‖∞ = max
1≤i≤3

3∑
j=1

|aij| = max{4, 8, 11} = 11.
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3.3 Direct Methods

Direct methods are techniques used for solving and obtaining the exact
solutions (in theory) of linear algebraic equations in a finite number of steps.
The main widely used direct methods are Gaussian elimination method
and Gauss-Jordan method.

Consider the following linear system of dimension n× (n+ 1)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn.

This system can be written in concise form by using matrix notation as
AX = B as follows:


a11 a12 · · · a1n
a21 a12 · · · a1n
...

...
. . .

...
an1 a12 · · · a1n



x1
x2
...
xn

 =


b1
b2
...
bn

 ,
where An×n is square matrix and is called a coefficient matrix, Bn×1 is

a column vector known as the right hand side vector and Xn×1 is a column
vector known as unknowns vector. Also, this system can be written as

[A|B] =


a11 a12 · · · a1n b1
a21 a12 · · · a1n b2
...

...
. . .

...
...

an1 a12 · · · a1n bn

 ,
where [A|B] is called the augmented matrix.

3.3.1 Backward Substitution Method

Backward substitution also called back substitution is an algorithm or
technique used for solving upper-triangular systems which are systems
such that their coefficient matrices are upper-triangular matrices. Assume
that we have the following upper-triangular system
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a11x1 + a12x2 + a13x3 + · · ·+ a1n−1xn−1 + a1nxn = b1

a22x2 + a23x3 + · · ·+ a2n−1xn−1 + a2nxn = b2

a33x3 + · · ·+ a3n−1xn−1 + a3nxn = b3
...

an−1n−1xn−1 + an−1nxn = bn−1

annxn = bn.

To find a solution to this system we follow the following steps provided
that xrr 6= 0, r = 1, 2, · · · , n:

(1) Solve the last (nth) equation for xn:

xn =
bn
ann

.

(2) Substitute xn in the next-to-last ((n − 1)th) equation and solve it for
xn−1:

xn−1 =
bn−1 − an−1nxn

an−1n−1
.

(3) Now, xn and xn−1 are known and can be used to find xn−2:

xn−2 =
bn−2 − an−1n−1xn−1 − an−1nxn

an−2n−2
.

(4) Continuing in this way until we arrive at the general step:

xr =
br −

∑n
j=r+1 arjxj

arr
, r = n− 1, n− 2, · · · 1.

Example 21. Solve the following linear system using back substitution method

3x1 + 2x2 − x3 + x4 = 10

x2 − x3 + 2x4 = 9

3x3 − x4 = 1

3x4 = 6
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Solution: Solve the last equation for x4 to obtain

x4 =
6

3
= 2.

Substitute x4 = 2 in the third equation, we have

x3 =
1 + x4

3
=

1 + 2

3
=

3

3
= 1.

Now, use values x3 = 1 and x4 = 2 in the second equation to find x2

x2 = 9 + x3 − 2x4 = 9 + 1− 4 = 6.

Finally, solve the first equation for x1 yields

x1 =
10− 2x2 + x3 − x4

3
=

10− 12 + 1− 2

3
=
−3

3
= −1.

Example 22. Show that the following linear system has no solution

3x1 + 2x2 − x3 + x4 = 10

0x2 − x3 + 2x4 = 9

3x3 − x4 = 1

3x4 = 6

Solution: Solve the last equation for x4 to obtain

x4 =
6

3
= 2.

Substitute x4 = 2 in the third equation, we have

x3 =
1 + x4

3
=

1 + 2

3
=

3

3
= 1.

Also, from the second equation we have

x3 = 9− 2x4 = 9− 4 = 6.

This contradiction implies that the linear system in above has no solution.

Example 23. Show that the following linear system has infinitely many so-
lutions

3x1 + 3x2 − x3 + x4 = 10

0x2 + x3 + 0x4 = 1

3x3 − x4 = 1

3x4 = 6
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Solution: Solve the last equation for x4 to obtain

x4 =
6

3
= 2.

Substitute x4 = 2 in the third equation, we have

x3 =
1 + x4

3
=

1 + 2

3
=

3

3
= 1.

Also, from the second equation we have

x3 = 1.

Solve the first equation for x2 yields

x2 =
10− 3x1 + x3 − x4

3
=

10− 3x1 + 1− 2

3
=

9− 3x1
3

= 3− x1.

Note that the equation for x2 has infinitely many solutions since it depends
upon x1 which takes infinitely many values. Now, let x1 = 1, we have x2 = 2.
Hence the solution set of the system is:

x1 = 1, x2 = 2, x3 = 1, x4 = 2.

3.3.2 Forward Substitution Method

Forward substitution is an algorithm or technique used for solving lower-
triangular systems which are systems such that their coefficient matrices
are lower-triangular matrices.

a11x1 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 + a33x3 = b3
...

an−11x1 + an−12x2 + an−13x3 + · · ·+ an−1n−1xn−1 = bn−1

an1x1 + an2x2 + an3x3 + · · ·+ ann−1xn−1 + annxn = bn.

To find a solution to this system we follow the following steps provided
that xrr 6= 0, r = 1, 2, · · · , n:

(1) Solve the first (1st) equation for x1:

x1 =
b1
a11

.
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(2) Substitute x1 in the second equation (2nd) equation and solve it for x2:

x2 =
b2 − a21x1

a22
.

(3) Now, x1 and x2 are known and can be used to find x3:

x3 =
b3 − a31x1 − a32x2

a33
.

(4) Continuing in this way until we arrive at the general step:

xr =
br −

∑r−1
j=1 arjxj

arr
, r = 2, 3, · · ·n.

Example 24. Use the forward substitution method for solving the following
linear system

4x1 = 8

2x1 + x2 = −1

x1 − x2 + 5x3 = 0.5

0.1x1 + 2x2 − x3 + 2x4 = 2

,

Solution: Solving the first equation for x1 yields

x1 =
8

4
= 2.

Using the value of x1 to find x2

x2 =
−1− 2x1

2
=
−1− 2(2)

2
= −2.5.

Use x1 and x2 to find x3

x3 =
0.5− x1 + x2

5
=

0.5− 2− 2.5

5
=
−4

5
= −0.8.

Finally, solve for x4 to have

x4 =
2− 0.1x1 − 2x2 + x3

2
=

2− 0.1(2)− 2(−2.5)− 0.8

2
=

6

2
= 3.
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Example 25. Show that there is no solution to the linear system

4x1 = 8

2x1 + x2 = −1

x1 − x2 + 0x3 = 0.5

0.1x1 + 2x2 − x3 + 2x4 = 2

,

Solution: Solving the first equation for x1 yields

x1 =
8

4
= 2.

Using the value of x1 in the second equation to find x2

x2 =
−1− 2x1

2
=
−1− 2(2)

2
= −2.5.

From the third equation we have

x2 = x1 − 0.5 = 2− 0. = 1.5.

This contradiction indicates that there is no solution to the system in above.

Example 26. Show that there are infinitely many solution to the following
linear system

4x1 = 8

2x1 + x2 = −1

0x1 − x2 + 0x3 = 2.5

0.1x1 + 2x2 − x3 + 2x4 = 2

,

Solution: Solving the first equation for x1 yields

x1 =
8

4
= 2.

Using the value of x1 in the second equation to find x2

x2 =
−1− 2x1

2
=
−1− 2(2)

2
= −2.5.
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From the third equation we have

x2 = −2.5.

Solving the last equation for x3 we obtain

x3 = −2 + 0.1x1 + 2x2 + 2x4 = −2 + 0.1(2) + 2(−2.5) + 2x4 = 2x4 − 6.8,

which has infinitely many solutions. Hence, the above linear system has
infinitely many solutions. If we choose x4 = 8, then we get x3 = −0.8. So,
the solution set is:

x1 = 2, x2 = −2.5, x3 = 9.8, x4 = 8.

3.3.3 Gaussian Elimination Method

Gaussian elimination method is also known as Gauss elimination
method or simply elimination method. It is a direct method used for
solving a system of linear algebraic equations. In this method we transform
the linear system to an equivalent upper or lower triangular system and then
solve it by backward or forward substitution. The process of transforming
the linear system to an equivalent upper or lower triangular system is called
trianguarisation.

Definition 30 (Equivalent Systems). Two linear algebraic systems of dimen-
sion n × n is said to be they are equivalent if they have the same solution
sets.

Definition 31 (Elementary Transformations). The following operations per-
formed on a linear system transform it to an equivalent system:

• Interchanges: Changing the order of any two equations in the system.

• Replacement: Any equation of the system can be replaced by itself
and a nonzero multiple of any other equation in the system.

• Scaling: Multiplying any equation in the system by a nonzero real
constant.

Definition 32 (Elementary Row Operations). The following operations per-
formed on a linear system transform it to an equivalent system:

• Interchanges: Changing the order of any two rows in the matrix.

• Replacement: Any row in the matrix can be replaced by its sum and
a nonzero multiple of any other row in the matrix.

• Scaling: Multiplying any row in the matrix by a nonzero real constant.
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Pivoting

Pivoting is an important process used ins solving linear systems in conjunc-
tion with Gaussian elimination and there different types of pivoting strategies
as outlined below:

1. Trivial Pivoting: The process of using the element (entry) akk in
the coefficient matrix A to eliminate the entries ark, r = k + 1, k +
2, · · ·n is called pivoting process. The element akk is called pivotal
element and the kth row is called pivotal row. If the entry akk = 0,
then the row k cannot be used to eliminate the entries ark, r = k +
1, k + 2, · · · , n and we need to find a row r such that ark 6= 0, r > k,
and then interchange the row k and the row r such that the pivotal
element is nonzero. This process is called the trivial pivoting, also,
if no interchange or switching between the rows is performed then the
process is called only pivoting or trivial pivoting.

2. Partial Pivoting: To reduce the round-off errors or propagation of
errors it is advisable to search for the the greatest element in the mag-
nitude in column r that lies on or below the main diagonal, and then
move it to the main diagonal in the pivotal row r to be the pivotal
element and use it to eliminate the entries in the column r below the
main diagonal, this process is called the partial pivoting. Determine
row k below the main diagonal in which there is the largest element in
the absolute value as follows:

akr = max{|arr|, |ar+1r|, · · · , |an−1r|, |anr|}, (3.1)

and then interchange the row k and row r for k > r. Now, since the
entry in the main diagonal has the larges absolute value then the values
of all the multipliers are:

|mkr| ≤ 1, k = r + 1, r + 2, · · · , n,

and this will be helpful to keep the magnitudes of elements in the
current matrix are relatively the same magnitudes of the elements in
the original coefficient matrix.

3. Scaled Pivoting: In this approach, the pivoting element is chosen to
be the largest in magnitude relative to the elements which lie in the
same row. This type of pivoting is used when the entries in the same
row vary largely in magnitude.
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4. Complete Pivoting: In this technique, we use both partial and scaled
pivoting and is sometimes referred to as scaled partial pivoting or
equilibrating. In this process, we search all the entries in the column
r that lie on or below the main diagonal for the largest entry in the
magnitude relative to the entries in its row. Hence, We interchange
both the columns and rows to find the largest entry in absolute value,
i.e. we searching for largest entry un the matrix and for this reason
this type of pivoting is also known as maximal pivoting. we start the
process by searching all the rows r to n for the largest entry in absolute
value in each row, we denote this element by pk:

pk = max{|akr|, |akr+1|, · · · , |akn−1|, |akn|}, k = r, r + 1, · · · , n. (3.2)

Then, to locate the pivoting row, we need to compute

akr
pk

= max{|arr
pr
|, |ar+1r

pr+1

|, · · · , |an−1r
pn−1

|, |anr
pn
|}. (3.3)

Then, interchange the row r and k, except the case when r = k.

Example 27. Write the following linear system in the augmented form and
then solve it by using Gauss elimination method with trivial pivoting.

x1 + 2x2 − x3 + 4x4 = 12

2x1 + x2 + x3 + x4 = 10

−3x1 − x2 + 4x3 + x4 = 2

x1 + x2 − x3 + 3x4 = 6

.

Solution: The augmented matrix is
1 2 −1 4 12
2 1 1 1 10
−3 −1 4 1 2
1 1 −1 3 6


The first row is the pivotal row, so the pivotal element is a11 = 1 and

is used to eliminate the first column below the diagonal. We will denote
by mr1 to the multiples of the row 1 subtracted from row r for r = 2, 3, 4.
Multiplying the first row by m21 = −2 and add it to the second row to have
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
1 2 −1 4 12
0 −3 3 −7 −14
−3 −1 4 1 2
1 1 −1 3 6

 .
Now, multiply the first row by m31 = 3 and add it to the third row to

obtain 
1 2 −1 4 12
0 −3 3 −7 −14
0 5 1 13 38
1 1 −1 3 6

 .
Multiplying the first row by m41 = −1 and adding it to the fourth row

yields 
1 2 −1 4 12
0 −3 3 −7 −14
0 5 1 13 38
0 −1 0 −1 −6

 .
Now, the pivotal row is the second row and the pivotal element is a22 =

−3. Multiply the second row by m32 = 5
3

to have
1 2 −1 4 12
0 −3 3 −7 −14
0 0 6 4/3 44/3
0 −1 0 −1 −6

 .
Multiply the the second row by m42 = −1

3
and add it to the fourth row

to obtain 
1 2 −1 4 12
0 −3 3 −7 −14
0 0 6 4/3 44/3
0 0 −1 4/3 −4/3

 .
Now, the pivotal row is the third row and the third element is a33 = 6.

Finally, multiply the third row by m43 = 1
6

to the fourth row to have
1 2 −1 4 12
0 −3 3 −7 −14
0 0 6 4/3 44/3
0 0 0 14/9 10/9

 .
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Now, note that the coefficient matrix is transformed into an upper trian-
gular matrix and can be solved by backward substitution method. Firstly,
we from the last row we compute

x4 =
10/9

14/9
=

5

7
.

Use the third row to solve for x3

x3 =
44/3− 4/3(5/7)

6
=

288/21

6
=

16

7
.

Now, solve the second equation for x2

x2 =
−14− 3x3 + 7x4

−3
=
−14− 3(16/7) + 7(5/7)

−3
=

111

21
=

37

7
.

Finally, solve the first equation for x1

x1 = 12− 2x2 + x3 − 4x4 = 12− 2(37/7) + 16/7− 4(5/7) =
6

7
.

Example 28. Solve the following linear system using Gauss elimination
method by using forward substitution technique

x1 + 2x2 + x3 + 4x4 = 13

2x1 + 0x2 + 4x3 + 3x4 = 28

4x1 + 2x2 + 2x3 + x4 = 20

−3x1 + x2 + 3x3 + 2x4 = 6

.
Solution: We start our solution strategy by transforming this square system
to equivalent lower-triangular system and then solve it by using forward
substitution method. Write the system in augmented matrix form

1 2 1 4 13
2 0 4 3 28
4 2 2 1 20
−3 1 3 2 6

 .
a b c d e


1 1 1 1 1 R1 + 2R2

0 1 0 0 1 g
0 0 1 0 1 h
0 0 0 1 1 i
0 0 0 0 1 j
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Note that now the pivotal row is the fourth row and the pivotal element
is a44 = 2. Multiply the fourth row by the multiple m14 = −2 and it to the
first row to have 

7 0 −5 0 1
2 0 4 3 28
4 2 2 1 20
−3 1 3 2 6

 .
Multiply the fourth row by m24 = −3

2
and add it to the second row to

obtain 
7 0 −5 0 1

13/2 −3/2 −1/2 0 19
4 2 2 1 20
−3 1 3 2 6

 .
Now multiply the fourth equation by m34 = −1

2
and add it to the third

row to have 
7 0 −5 0 1

13/2 −3/2 −1/2 0 19
11/2 3/2 1/2 0 17
−3 1 3 2 6

 .
The pivotal row now is the third row and the pivotal element is a33 = 1/2.

Add the third row to the second row (i.e. multiply it by m23 = 1) to get
7 0 −5 0 1
12 0 0 0 36

11/2 3/2 1/2 0 17
−3 1 3 2 6

 .
Now 

12 0 0 0 36
11/2 3/2 1/2 0 17

7 0 −5 0 1
−3 1 3 2 6

 .
The pivotal row (third row) is used to eliminate elements in the second

row and the pivotal element is a33 = −5. Multiply the third row by m23 = 1
10

to have
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
12 0 0 0 36

31/5 3/2 0 0 171/10
7 0 −5 0 1
−3 1 3 2 6

 .
Now, use forward substitution to solve the lower-triangular matrix. solve

the first equation for x1

x1 =
36

12
= 3.

Use the equation to find x2

x2 =
171/10− (31/5)3

3/2
= −1.

Now, solve the third equation for x3

x3 =
1− 7(3)

−5
= 4.

Finally, solve the fourth equation for x4

x4 =
6− (−3)(3)− 1(−1)− 3(4)

2
= 2.

3.3.4 Gauss-Jordan Elimination Method

In this method instead of transforming the coefficient matrix into upper or
lower triangular system, we transform the coefficient matrix into diagonal (in
particular identity) matrix using elementary row operations.

Example 29. Solve the following linear system using Gauss-Jordan elimi-
nation method

3x1 + 4x2 + 3x3 = 10

x1 + 5x2 − x3 = 7

6x1 + 3x2 + 7x3 = 15

.

Solution: Express the system in augmented matrix form
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 3 4 3 10
1 5 −1 7
6 3 7 15

 .
The pivot row is the first row and the pivot element is a11 = 3. Multiply

it by m11 = 1/3 to get  1 4/3 1 10/3
1 5 −1 7
6 3 7 15

 .
Subtract the second equation from the first (i.e. multiply it by m21 = −1)

and multiply the fist equation by m31 = −6 and add it to the third equation
to have  1 4/3 1 10/3

0 −11/3 2 −11/3
0 −5 1 −5

 .
Now, the pivot row is the second row and the pivot element a22 = −11/3.

Multiply it by m22 = −3/11 to have 1 4/3 1 10/3
0 1 −6/11 1
0 −5 1 −5

 .
Multiply the first and third rows by m12 = −4/3 and m32 = 5 to obtain 1 0 19/11 2

0 1 −6/11 1
0 0 −19/11 0

 .
The pivot element now is third row and the pivot element is a33 = −19/11.

Multiply it by m33 = −11/19 to get 1 0 19/11 2
0 1 −6/11 1
0 0 1 0

 .
Finally, multiply the third row by m13 = −19/11 and m23 = 6/11 and

add it to the first and second rows to have 1 0 0 2
0 1 0 1
0 0 1 0

 .
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Hence, we have x1 = 2, x2 = 1 and x3 = 0.

Example 30. Solve the following linear system using Gauss-Jordan elimi-
nation method

−2x1 + x2 + 5x3 = 15

4x1 − 8x2 + x3 = −21

4x1 − x2 + x3 = 7

.

Solution: Write the system in augmented matrix form −2 1 5 15
4 −8 1 −21
4 −1 1 7

 .
Multiply the first row by m21 = m31 = −2 and it to the second and third

rows respectively, to obtain −2 1 5 15
0 −6 11 9
0 1 11 37

 .
Now, multiply the second row by m12 = m32 = 1

6
and it to the first and

third rows respectively, to have −2 0 41/6 33/2
0 −6 11 9
0 0 77/6 77/2

 .
Finally, multiply the third row by m13 = −41

77
and m32 = −6

7
and it to the

first and third rows respectively, to obtain −2 0 0 −4
0 −6 0 −24
0 0 77/6 77/2

 ,
implies that

x1 =
−4

−2
= 2, x2 =

−24

−6
= 4 and x3 =

77/2

77/6
= 3.
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3.4 LU and Cholesky Factorisations

In this section we will discuss the triangular factorisations of matrices.

Definition 33 (Positive Definite Matrix). Let An×n be symmetric real matrix
and x ∈ Rn a nonzero vector. Then, A is said to be positive definite
matrix if A = AT and xTAx > 0 for any x.

Remark 10. Note that the matrix A is nonsingular by definition.

Definition 34 (Triangular Factorisation). Assume that A is a nonsingular
matrix. It said to be A has a triangular factorisation or triangular
decomposition if it can be factorised as a product of unit lower-triangular
matrix L and an upper triangular matrix U :

A = LU.

or in matrix form a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

 u11 u12 u13
0 u22 u23
0 0 u33

 .
Note that since A is nonsingular matrix this implies that urr 6= 0 for all

r and this is called Doolittle factorisation.

Also, A can be expressed as a product of lower-triangular matrix L and
unit upper triangular matrix U : a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 1 u12 u13
0 1 u23
0 0 1

 ,
and this is called Crout factorisation.

To solve the linear system AX = B using LU factorisation, we do the
following two steps:

1. Using forward substitution to solve the the lower-triangular linear sys-
tem LY = B for Y .

2. Using backward substitution to solve the upper-triangular linear system
UX = Y for X.
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Direct LU Factorisation Using Gaussian Elimination Method

The matrix A can be factored directly using Gauss elimination method with-
out any row interchanges. In this case the matrix A is expressed in terms
of the identity matrix I follows A = IA. We perform the row operations
on the matrix A on the right and the resulting matrix it will be the upper
triangular matrix U . The multipliers are stored in their appropriate places
in the identity matrix on the left which will be the lower triangular matrix
L. All this information is summarised in the next theorem.

Theorem 19 (Direct LU Factorisation Without Row Interchanges).
Assume that the linear system AX = B can be solved using Gaussian elim-
ination with no row interchanges. Then, the coefficient matrix A can be
factored as a product of a lower triangular matrix L and an upper triangular
matrix U as follows:

A = LU.

The matrix L has 1’s on its main diagonal and the matrix has nonzero entries
on its main diagonal. After constructing the matrices L and U then the linear
system can be solved in the following two steps:

(1). Solve the lower triangular system LY = B for Y using the forward
substitution method.

(2). Solve the upper triangular system UX = Y for X using the backward
substitution method.

Proof. For proof, see any standard text on numerical analysis or numerical
linear algebra.

The following example explains this type of LU factorisation.

Example 31. Find the LU factorisation of the following matrix using Gaus-
sian elimination without row interchanges

A =

 2 4 −1
−2 3 1
1 5 6

 .
Solution. Writing the matrix A in terms of the identity matrix as follows

A =

 2 4 −1
−2 3 1
1 5 6

 =

1 0 0
0 1 0
0 0 1

 2 4 −1
−2 3 1
1 5 6

 = IA
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The first row is used to eliminate the elements under the main diagonal
(subdiagonal elements) in the first column. The multipliers of the first row are
m21 = a21/a11 = −2/2 = −1 and m31 = a31/a11 = 1/2 = 0.5, respectively.

 2 4 −1
−2 3 1
1 5 6

 =

 1 0 0
−1 1 0
0.5 0 1

2 4 −1
0 7 0
0 3 6.5


Now, the second row is used to eliminate the entries below the main di-

agonal in the second column and the multiple of the second row is m32 =
a32/a22 = 3/7. Hence, we have the following LU factorisation of A

A =

 2 4 −1
−2 3 1
1 5 6

 =

 1 0 0
−1 1 0
1/2 3/7 1

2 4 −1
0 7 0
0 0 6.5

 = LU.

The LU Factorisation Without Using Gaussian Elimination Method

Example 32. Solve the following linear system using LU (Doolittle) decom-
position

2x1 − 3x2 + x3 = 2

x1 + x2 − x3 = −1

−x1 + x2 − x3 = 0

Solution: Express the system in matrix form 2 −3 1 2
1 1 −1 −1
−1 1 −1 0

 .
Factor A as follows: 2 −3 1

1 1 −1
−1 1 −1

 =

 1 0 0
l21 1 0
l31 l32 1

 u11 u12 u13
0 u22 u23
0 0 u33

 .
Find the values of the entries of matrices L and U . From the first column

we have
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2 = 1u11 =⇒ u11 = 2,

and

1 = l21u11 = l212 =⇒ l21 = 0.5,

finally

−1 = l31u11 = l312 =⇒ l31 = −0.5.

In the second column, we have

−3 = 1u12 =⇒ u12 = −3,

and

1 = l21u12 + 1u22 = −1.5 + u22 =⇒ u22 = 2.5,

so

1 = l31u12 + l32u22 = (−0.5)(−3) + l32(2.5) =⇒ l32 = −0.2.

Finally, in the third column we have

1 = 1u13 =⇒ u13 = 1,

and

−1 = l21u13 + 1u23 = 0.5 + u23 =⇒ u23 = −1.5,

finally,

−1 = l31u13 + l32u23 + 1u33 = −0.5(1) + (−0.2)(−1.5) +u33 =⇒ u33 = −0.8.

Now, we have the LU factorisation

A =

 2 −3 1
1 1 −1
−1 1 −1

 =

 1 0 0
0.5 1 0
−0.5 −0.2 1

 2 −3 1
0 2.5 −1.5
0 0 −0.8

 = LU.
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Now, we have the following lower-triangular linear system LY = B for Y 1 0 0
0.5 1 0
−0.5 −0.2 1

 y1
y2
y3

 =

 2
−1
0

 .
Write the system in augmented matrix form

 1 0 0 2
0.5 1 0 −1
−0.5 −0.2 1 0

 .
Solve this system by forward substitution to have

y1 = 2, y2 = −1− 0.5(y1) = −1− 0.5(2) = −2,

and

y3 = 0 + 0.5(y1) + 0.2(y2) = 0.5(2) + 0.2(−2) = 0.6.

Now, we have the following upper-triangular linear system UX = Y

 2 −3 1
0 2.5 −1.5
0 0 −0.8

 x1
x2
x3

 =

 2
−2
0.6

 .
Express the system in augmented matrix form 2 −3 1 2

0 2.5 −1.5 −2
0 0 −0.8 0.6

 .
Finally, use the values of Y to solve the upper-triangular linear system

UX = Y by back substitution to have
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x3 =
0.6

−0.8
=
−3

4
, x2 =

−2 + 1.5(x3)

2.5
=
−2 + 1.5(−3/4)

2.5
= −5/4,

and

x1 =
2 + 3(x2)− 1(x3)

2
=

2 + 3(−5/4)− (−3/4)

2
= −1/2.

Definition 35 (Cholesky Factorisation). Let A be a real, symmetric and
positive definite matrix. Then, it can be factored or decomposed in a
unique way A = LLT , in which L is a lower-triangular matrix with a positive
diagonal, and is termed Cholesky factorisation. a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33

 .
Example 33. (a) Determine the Cholesky decomposition of the matrix

A =

 2 −1 2
4 −3 3
1 1 2


(b) Then, use the decomposition from part (a) to solve the linear system

2x1 − x2 + 2x3 = −1

4x1 + 3x2 + 3x3 = −4

x1 + x2 + 2x3 = 2

Solution: Factor A as a product LLT as follows: 2 −1 2
4 3 3
1 1 2

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33

 .
From the first column we obtain

2 = l211 =⇒ l11 =
√

2,

4 = l21l11 + l22(0) =⇒ 4 = l21
√

2 =⇒ l21 =
1

2
√

2
,
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1 = l31l11 + l32(0) + l33(0) =⇒ 1 = l31
√

2 =⇒ l31 =
1√
2
.

Now, from the second column we have

3 = l221 + l222 =⇒ 3 =
1

8
+ l222 =⇒ l22 =

√
23

8
,

1 = l31l21 + l32l22 + l33(0) =⇒ 1 =
1

4
+ l32

√
23

8
=⇒ l32 =

3
√

2

2
√

23
.

Finally, from the third column we get

2 = l231 + l232 + l233 =⇒ 2 =
1

2
+

9

46
+ l233 =⇒ l33 =

√
30

23
.

3.5 Iterative Methods

Direct methods are more efficient in solving linear systems of small dimen-
sions in less computational cost than iterative methods. For large linear
systems in particular for sparse linear systems iterative methods are more
efficient for solving linear systems in terms of computational cost and effort
compared to direct methods. In this section we will study the most common
and basic iterative methods for solving linear algebraic systems which are
Jacobi method and Gauss-Siedel method.

3.5.1 Jacobi Method

The general form of Jacobi iterative method for solving the ith equation
in the linear system AX = B for unknown xi, i = 1, , · · · , n is:

xki =
n∑

j=1

(
−
aijx

k−1
j

aii

)
+
bi
aii
, j 6= i, aii 6= 0, for i = 1, · · · , n, k = 1, · · · , n.

It is also known as Jacobi iterative process or Jacobi iterative tech-
nique
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Example 34. Solve the following linear system using Jacobi iterative method

2x1 + x2 + x3 = 0

x1 + 3x2 + x3 = 0.5

x1 + x2 + 2.5x3 = 0

Solution: These equations can be written in the form

x1 =
−x2 − x3

2
,

x2 =
0.5− x1 − x3

3
,

x3 =
−x1 − x2

2.5
.

Writing these equations in iterative form

xk+1
1 =

−xk2 − xk3
2

,

xk+1
2 =

0.5− xk1 − xk3
3

,

xk+1
3 =

−xk1 − xk2
2.5

.

Let us start with initial guess P0 = (x01, x
0
2, x

0
3) = (0, 0.1,−0.1). Substi-

tuting these values in the right-hand side of each equation in above to find
the new iterations

x11 =
−x02 − x03

2
=
−0.1− (−0.1)

2
=
−0.1 + 0.1

2
= 0,

x12 =
0.5− x01 − x03

3
=

0.5− 0− (−0.1)

3
= 0.2,

x13 =
−x01 − x02

2.5
=
−0− 0.1

2.5
= −0.04.
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Now, the new point P1 = (x11, x
1
2, x

1
3) = (0, 0.2,−0.04) is used in the

Jacobi iterative form to find the next approximation P2

x21 =
−x12 − x13

2
=
−0.2 + 0.04

2
=
−0.16

2
= −0.08,

x22 =
0.5− x11 − x13

3
=

0.5 + 0.04

3
=

0.54

3
= 0.18,

x23 =
−x11 − x12

2.5
=
−0− 0.2

2.5
=
−0.2

2.5
= −0.08.

The new point P2 = (x21, x
2
2, x

2
3) = (−0.08, 0.18,−0.08) is closer to the

solution than P0 and P1 and is used to find P3

x31 =
−x22 − x23

2
=
−0.18 + 0.08

2
=
−0.1

2
= −0.05,

x32 =
0.5− x21 − x23

3
=

0.5 + 0.08 + 0.08

3
=

0.66

3
= 0.22,

x33 =
−x21 − x22

2.5
=

0.08− 0.18

2.5
=
−0.1

2.5
= −0.04.

This Jacobi iteration process generates a sequence of points {Pn} =
{(xn1 , xn2 , xn3 )} that converges to the solution (x1, x2, x3) = (−3/38, 4/19,−1/19) =
(−0.078947368421053, 0.210526315789474,−0.052631578947368). The out-
line of the results is given in the Table 3.1.
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n xn1 xn2 xn3
0 0.000000000000000 0.100000000000000 −0.100000000000000
1 0.000000000000000 0.200000000000000 −0.040000000000000
2 −0.080000000000000 0.180000000000000 −0.080000000000000
3 −0.050000000000000 0.220000000000000 −0.040000000000000
4 −0.090000000000000 0.196666666666667 −0.068000000000000
5 −0.064333333333333 0.219333333333333 −0.042666666666667
6 −0.088333333333333 0.202333333333333 −0.062000000000000
7 −0.070166666666667 0.216777777777778 −0.045600000000000
8 −0.085588888888889 0.205255555555556 −0.058644444444444
9 −0.073305555555556 0.214744444444444 −0.047866666666667
10 −0.083438888888889 0.207057407407407 −0.056575555555556
11 −0.075240925925926 0.213338148148148 −0.049447407407407
12 −0.081945370370370 0.208229444444444 −0.055238888888889
13 −0.076495277777778 0.212394753086420 −0.050513629629630
14 −0.080940561728395 0.209002969135802 −0.054359790123457
15 −0.077321589506173 0.211766783950617 −0.051224962962963
16 −0.080270910493827 0.209515517489712 −0.053778077777778
17 −0.077868719855967 0.211349662757202 −0.051697842798354
18 −0.079825909979424 0.209855520884774 −0.053392377160494
19 −0.078231571862140 0.211072762379973 −0.052011844362140
20 −0.079530459008916 0.210081138741427 −0.053136476207133

Table 3.1: Jacobi Iterative Solution of Example 34

3.5.2 Gauss-Siedel Method

An improvement of Jacobi method can be made by using the recent values
xki , i, k = 1, · · · , n, in the calculations once their values are obtained. This
improvement is called Gauss-Sedel iterative method and its general form
for solving the ith equation in the linear system AX = B for unknown
xi, i = 1, , · · · , n is:

xki =
i−1∑
j=1

(
−
aijx

k
j

aii

)
+

n∑
j=i+1

(
−
aijx

k−1
j

aii

)
+
bi
aii
, j 6= i, aii 6= 0,

for i = 1, · · · , n, and k = 1, · · · , n.

It is also known as Gauss-Sedel iterative process or Gauss-Sedel
iterative technique
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Example 35. Solve the following linear system using Gauss-Siedel iterative
method

2x1 − 4x2 + x3 = −1

x1 + x2 + 6x3 = 1

3x1 + 3x2 + 5x3 = 4

.

Solution: Rearrange the system in above such that the coefficient matrix is
strictly diagonally dominant

3x1 + 3x2 + 5x3 = 4

2x1 − 4x2 + x3 = −1

x1 + x2 + 6x3 = 1

.
These equations can be written in the form

x1 =
4− 3x2 − 5x3

3
,

x2 =
−1− 2x1 − x3

−4
=

1 + 2x1 + x3
4

,

x3 =
1− x1 − x2

6
.

This suggests the following Gauss-Siedel iterative process

xn+1
1 =

4− 3xn2 − 5xn3
3

,

xn+1
2 =

1 + 2xn+1
1 + xn3
4

,

xn+1
3 =

1− xn+1
1 − xn+1

2

6
.

We start with initial guess P0 = (x01, x
0
2, x

0
3) = (1, 0.1,−1). Substitute

x02 = 0.1 and x03 = −1 in the first equation and have
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x11 =
4− 3x02 − 5x03

3
=

4− 3(0.1)− 5(−1)

3
=

8.7

3
= 2.9.

Then, substitute the new value x11 = 2.9 and x03 = −1 into the second
equation to obtain

x12 =
1 + 2x11 + x03

4
=

1 + 2(2.9) + (−1)

4
= 1.45.

Finally, substitute the new values x11 = 2.9 and x12 = 1.45 in the third
equation and get

x13 =
1− x11 − x12

6
=

1− 2.9− 1.45

6
=
−3.35

6
= −0.558333333333333.

Now, we have the now point P1 = (x11, x
1
2, x

1
3) = (2.9, 1.45,−0.558333333333333)

is used to find the next approximation P2.

Substitute x12 = 1.45 and x13 = −0.558333333333333 in the first equation
and get

x21 =
4− 3x12 − 5x13

3
=

4− 3(1.45)− 5(−0.558333333333333)

3

=
2.441666666666666

3
= 0.813888888888889.

Then, substitute the new value x12 = 0.813888888888889 and x13 = −0.558333333333333
into the second equation to obtain

x22 =
1 + 2x21 + x13

4
=

1 + 2(0.813888888888889) + (−0.558333333333333)

4

=
2.069444444444445

4
= 0.517361111111111.

Finally, substitute the new values x12 = 0.813888888888889 and x22 =
0.517361111111111 in the third equation and get

x23 =
1− x21 − x22

6
=

1− 0.813888888888889− 0.517361111111111

6

=
−0.331250000000000

6
= −0.055208333333333.
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This iteration process generates a sequence of points {Pn}= {(xn1 , xn2 , xn3 )}
that converges to the solution (x1, x2, x3) = (32/39, 25/39,−1/13) =
(0.820512820512820, 0.641025641025641,−0.076923076923077). The results
are given in the Table 3.2.

n xn1 xn2 xn3
0 1.000000000000000 0.100000000000000 −1.000000000000000
1 2.900000000000000 1.450000000000000 −0.558333333333333
2 0.813888888888889 0.517361111111111 −0.055208333333333
3 0.907986111111111 0.690190972222222 −0.099696180555556
4 0.809302662037037 0.629727285879630 −0.073171657986111
5 0.825558810763889 0.644486490885417 −0.078340883608218
6 0.819414981794946 0.640122269995419 −0.076589541965061
7 0.820860299946349 0.641282764481909 −0.077023844071376
8 0.820423642303718 0.640955860134015 −0.076896583739622
9 0.820538446098689 0.641045077114439 −0.076930587202188
10 0.820505901555874 0.641020303977390 −0.076921034255544
11 0.820514753115183 0.641027117993706 −0.076923645184815
12 0.820512290647653 0.641025234027623 −0.076922920779213
13 0.820512967271065 0.641025753440729 −0.076923120118632
14 0.820512780090325 0.641025610015504 −0.076923065017638
15 0.820512831680559 0.641025649585870 −0.076923080211072
16 0.820512817432583 0.641025638663523 −0.076923076016018
17 0.820512821363173 0.641025641677582 −0.076923077173459
18 0.820512820278183 0.641025640845727 −0.076923076853985
19 0.820512820577581 0.641025641075294 −0.076923076942146
20 0.820512820494949 0.641025641011938 −0.076923076917814

Table 3.2: Gauss-Siedel Iterative Solution of Example 35
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Exercises

Exercise 20. Solve Example 27 Using Gauss elimination with forward sub-
stitution method. Compare the solution with solution of the same example.

Exercise 21. Solve Example 28 Using Gauss elimination with backward sub-
stitution method. Compare the solution with solution of the same example.

Exercise 22. Repeat Example 34 with Gauss-Siedel iteration. Compute five
iterations and compare them with Jacobi iterations in the same example.

Exercise 23. Redo Example 35 with Jacobi iteration. Compute five itera-
tions and compare them with Gauss-Siedel iterations in the same example.

Exercise 24. Use Gauss elimination with backward substitution method and
three-digit rounding arithmetic to solve the following linear system

x1 + 3x2 + 2x3 = 5

x1 + 2x2 − 3x3 = −2

x1 + 5x2 + 3x3 = 10

.

Exercise 25. (a) Determine the LU factorisation for matrix A in the linear
system AX = B, where

A =

 −1 1 −2
2 −1 1
−4 1 −2

 and B =

 2
1
4

 .
(b) Then use the factorisation to solve the system

−x1 + x2 − 2x3 = 2

2x1 − x2 + x3 = 1

−4x1 + x2 − 2x3 = 4

.

Exercise 26. Solve the following linear system using Gauss-Jordan elimina-
tion method

−4x1 − x2 − 2x3 = −9

−x1 − x2 + 3x3 = 9

−2x1 − 4x2 + x3 = 5

.
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Chapter 4

Curve Fitting and
Approximation Theory

4.1 Introduction

In many scientific and engineering applications, scientists and engineers need
to find the best fitting curve for experimental data for which there is no
known function. Curve fitting is a branch of numerical analysis studies the
mathematical framework for finding the best fitting (closest) curves for given
sets of empirical data.

4.1.1 Linear Least Squares

In scientific applications experiments sometimes produce a collection of data
points (x1, y1), (x2, y2), · · · , (xn, yn) where their abscissas are different. We
need to find a formula (function) y = f(x) that relates these variables. We
assume that the relation between these variables is linear and hence we can
write the formula as

y = f(x) = ax+ b. (4.1)

Suppose that the numerical values {xk} and {yk}, k = 1, · · · , n are accu-
rate to several significant digits, i.e. the satisfy the following error formula

f(xk) = yk + ek, 1 ≤ k ≤ n, (4.2)

the quantities ek are the errors and also called the deviations or resid-
uals

ek = yk − f(xk), 1 ≤ k ≤ n. (4.3)
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Now, our goal is to measure how far the curve y = f(x) lies away from
the data points. In fact, there are many norms to measure that and the most
commonly used are:

E1(f) =
1

n

n∑
k=1

|f(xk)− yk|, Average Error Norm, (4.4)

E2(f) =
( 1

n

n∑
k=1

|f(xk)− yk|2
)1/2

, Root Mean Square Error Norm,

(4.5)

E∞(f) = max
k=1,··· ,n

{
|f(xk)− yk|

}
, Maximum Error Norm. (4.6)

The maximum error E∞ is obviously the largest since it gives the max-
imum value of the error. The average error E1 is widely used since it is
simple and easy to compute, it averages the absolute values of the error at
the given data points. The E2 is the most commonly used in statistics and it
is a traditional choice, it is simply computes the square root of the mean of
error squares. To find the best fitting line to a set of given data we need to
minimise the quantities in the three equations above (4.4)-(4.6). We choose
the error E2 since it is easy to minimise computationally.

Let {(xk, yk)}nk=1 be a set of given data points such that their abscissas
are distinct. The line in (4.1) is called the least-squares line because it
minimises the E2 error. The error E2 is a minimum if and only if (iff)
the expression n(E2(f))2 =

∑n
k=1 |f(xk) − yk|2 is a minimum. To find the

unknown coefficients of the least-squares line, we solve linear system of two
equations

(
n∑

k=1

x2k

)
a +

(
n∑

k=1

xk

)
b =

n∑
k=1

xkyk,

(4.7)(
n∑

k=1

xk

)
a + nb =

n∑
k=1

yk,

these equations are called the normal equations. Upon solving this
linear system for a and b, we have
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a =

∑n
k=1 x

2
k

∑n
k=1 yk −

∑n
k=1 xkyk

∑n
k=1 xk

n (
∑n

k=1 x
2
k)− (

∑n
k=1 xk)

2 , (4.8)

b =
n
∑n

k=1 xkyk −
∑n

k=1 xk
∑n

k=1 yk

n (
∑n

k=1 x
2
k)− (

∑n
k=1 xk)

2 . (4.9)

78 Mohammad Sabawi/Numerical Analysis



Chapter 5

Interpolation and
Extrapolation

5.1 Introduction

In applied sciences and engineering, scientists and engineers often collect a
number of data points of different scientific phenomena via experimentation
and sampling. In many cases they need to estimate (interpolate) a function
at a point its functional value is not in the range of the collected data. Inter-
polation is a branch of numerical analysis studies the methods and techniques
of estimating an unknown value of a function at an intermediate value of its
independent variable. Also, interpolation is used to replace a complicated
function by a simpler one.

5.2 Lagrange Interpolation

Suppose that we would like to interpolate an arbitrary function f at a set of
limited points x0, x1, · · · , xn. These n+1 points are known as interpolation
nodes in interpolation theory. Firstly, we need to introduce a system of n+1
special polynomials of degree n known as interpolating polynomials or
cardinal polynomials. These polynomials are denoted by `0, `1, · · · , `n and
defined using Kronecker delta notation as follows

`i(xj) = δij =

{
1 if i = j,

0 if i 6= j.

.
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Then, we can interpolate the function f by a polynomial Pn of degree n
defined by

Pn(x) =
n∑

i=0

`i(x)f(xi),

this polynomial is called Lagrange polynomial or Lagrange form of
the interpolation polynomial, and it is a linear combination of the cardi-
nal polynomials `i, i = 0, 1, · · · , n. Moreover, it coincides with the function
f at the the nodes xj, j = 0, 1, · · · , n, namely

Pn(xj) =
n∑

i=0

`i(xj)f(xj) = `j(xj)f(xj) = f(xj).

The interpolating polynomials can be expressed as a product of n linear
factors

`i(x) =
n∏

j 6=i

(x− xj)
(xi − xj)

, i = 0, 1, · · · , .

i.e.

`i(x) =
(x− x0)
(xi − x0)

(x− x1)
(xi − x1)

· · · (x− xi−1)
(xi − xi−1)

(x− xi+1)

(xi − xi+1)
· · · (x− xn)

(xi − xn)
.

Example 36. Determine the linear Lagrange polynomial that passes through
the points (1, 5) and (4, 2) and use it to interpolate the linear function at
x = 3.

Solution: Writing out the cardinal polynomials

`0(x) =
(x− x1)
(x0 − x1)

=
(x− 4)

(1− 4)
=
−1

3
(x− 4),

and

`1(x) =
(x− x0)
(x1 − x0)

=
(x− 1)

(4− 1)
=

1

3
(x− 1).

Hence, the Lagrange polynomial is

P1(x) =
1∑

i=0

`i(x)f(xi) = `0(x)f(x0) + `1(x)f(x1) =

−1

3
(x− 4)(5) +

1

3
(x− 1)(2) = −x+ 6.
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So,

P1(3) = −(3) + 6 = 3.

Note that

P1(1) = −(1) + 6 = 5 = f(1), and P1(4) = −(4) + 6 = 2 = f(4).

Example 37. Find the Lagrange polynomial that interpolates the following
data

x 1 2 2.5 3 4 5
f(x) 0 5 6.5 7 3 1

Solution: The cardinal polynomials are:

`0(x) =
(x− x1)(x− x2)(x− x3)(x− x4)(x− x5)

(x0 − x1)(x0 − x2)(x0 − x3)(x0 − x4)(x0 − x5)

=
(x− 2)(x− 2.5)(x− 3)(x− 4)(x− 5)

(1− 2)(1− 2.5)(1− 3)(1− 4)(1− 5)

= − 1

36
x5 +

11

24
x4 − 53

18
x3 +

221

24
x2 − 505

36
x+

25

3
,

`1(x) =
(x− x0)(x− x2)(x− x3)(x− x4)(x− x5)

(x1 − x0)(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)

=
(x− 1)(x− 2.5)(x− 3)(x− 4)(x− 5)

(2− 1)(2− 2.5)(2− 3)(2− 4)(2− 5)

=
1

3
x5 − 31

6
x4 +

61

2
x3 − 509

6
x2 +

655

6
x− 50,

`2(x) =
(x− x0)(x− x1)(x− x3)(x− x4)(x− x5)

(x2 − x0)(x2 − x1)(x2 − x3)(x2 − x4)(x2 − x5)

=
(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)

(2.5− 1)(2.5− 2)(2.5− 3)(2.5− 4)(2.5− 5)

= −5000

7031
x5 +

75000

7031
x4 − 425000

7031
x3 +

1125000

7031
x2 − 1370000

7031
x+

600000

7031
,
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`3(x) =
(x− x0)(x− x1)(x− x2)(x− x4)(x− x5)

(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4)(x3 − x5)

=
(x− 1)(x− 2)(x− 2.5)(x− 4)(x− 5)

(3− 1)(3− 2)(3− 2.5)(3− 4)(3− 5)

=
1

2
x5 − 29

4
x4 +

79

2
x3 − 401

4
x2 +

235

2
x− 50,

`4(x) =
(x− x0)(x− x1)(x− x2)(x− x3)(x− x5)

(x4 − x0)(x4 − x1)(x4 − x2)(x4 − x3)(x4 − x5)

=
(x− 1)(x− 2)(x− 2.5)(x− 3)(x− 5)

(4− 1)(4− 2)(4− 2.5)(4− 3)(4− 5)

= −1

9
x5 +

3

2
x4 − 137

18
x3 +

109

6
x2 − 365

18
x+

25

3
,

`5(x) =
(x− x0)(x− x1)(x− x2)(x− x3)(x− x4)

(x5 − x0)(x5 − x1)(x5 − x2)(x5 − x3)(x5 − x4)

=
(x− 1)(x− 2)(x− 2.5)(x− 3)(x− 4)

(5− 1)(5− 2)(5− 2.5)(5− 3)(5− 4)

=
1

60
x5 − 5

24
x4 + x3 − 55

24
x2 +

149

60
x− 1.

Hence, the Lagrange polynomial is
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P5(x) =
6∑

i=0

`i(x)f(xi) = `i(x)f(xi) + `i(x)f(xi) +

`i(x)f(xi) + `i(x)f(xi) + `i(x)f(xi) + `i(x)f(xi) =

− 1

36
x5 +

11

24
x4 − 53

18
x3 +

221

24
x2 − 505

36
x+

25

3
(0) +

1

3
x5 − 31

6
x4 +

61

2
x3 − 509

6
x2 +

655

6
x− 50 (5) +

−5000

7031
x5 +

75000

7031
x4 − 425000

7031
x3 +

1125000

7031
x2 − 1370000

7031
x+

600000

7031
(6.5) +

1

2
x5 − 29

4
x4 +

79

2
x3 − 401

4
x2 +

235

2
x− 50 (7) +

−1

9
x5 +

3

2
x4 − 137

18
x3 +

109

6
x2 − 365

18
x+

25

3
(3) +

1

60
x5 − 5

24
x4 + x3 − 55

24
x2 +

149

60
x− 1 (1).

After some mathematical manipulation, we have

P5(x) = − 8

316395
x5 +

8

21093
x4 − 2722272566677

1266637395197952
x3 +

200167100491

35184372088832
x2

− 10969157106929

1583296743997440
x− 187476506320011

8796093022208
.

Note that the Lagrange interpolant is used to interpolate a function at a set
of non-equally spaced points.

5.3 Newton’s Difference Interpolation Formula

Newton’s interpolation formula is used to interpolate a function at a set of
given equally spaced points x0, x1, · · · , xn. Before we start we need to define
the finite divided differences.
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5.3.1 Finite Divided Differences

The first finite divided difference of the function f is in general given by

f [xi, xj] =
f(xj)− f(xi)

xj − xi
.

The second finite divided difference is the difference between the two divided
difference, is represented by

f [xi, xj, xk] =
f [xj, xk]− f [xi, xj]

xk − xi
.

Likewise, the nth finite divided difference is expressed by

f [x0, x1, · · · , xn−1, xn] =
f [x1, · · · , xn−1, xn]− f [x0, x1, · · · , xn−1]

xn − x0
.

Note that the zero-order difference is defined as

f [xi] = f(xi) = fi.

Also, observe that

f [xi, xj] =
f(xj)− f(xi)

xj − xi
=
f(xi)− f(xj)

xi − xj
= f [xj, xi].

The divided differences is summarised in the divided difference table given
below:

xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]

x0 f0 f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f1 f [x1, x2] f [x1, x2, x3] f [x1, x2, x3, x4]
x2 f2 f [x2, x3] f [x2, x3, x4]
x3 f3 f [x3, x4]
x4 f4

Example 38. Compute the divided differences of the following data
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x 0.5000 1.000 1.500 2.000 2.5000
f(x) 1.1250 3.000 7.3750 15.0000 26.6250

Solution: Using the standard notation the first finite divided differences are:

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
=

3− 1.1250

1− 0.5
=

1.8750

0.5
= 3.7500.

f [x1, x2] =
f(x2)− f(x1)

x2 − x1
=

7.3750− 3

1.5− 1
=

4.3750

0.5
= 8.7500.

f [x2, x3] =
f(x3)− f(x2)

x3 − x2
=

15− 7.3750

2− 1.5
=

7.6250

0.5
= 15.2500.

f [x3, x4] =
f(x4)− f(x3)

x4 − x3
=

26.6250− 15

2.5− 2
=

11.6250

0.5
= 23.2500.

Now, using the computed first divided differences, we compute the second
divided differences

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

8.7500− 3.7500

1.5− 0.5
=

5

1
= 5.000.

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

8.7500− 3.7500

1.5− 0.5
=

5

1
= 5.000.

f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1
=

15.2500− 8.7500

2− 1
=

6.5000

1
= 6.5000.

f [x2, x3, x4] =
f [x3, x4]− f [x2, x3]

x4 − x2
=

23.2500− 15.2500

2.5− 1.5
=

8.0000

1
= 8.0000.

Finally, we compute the third divided differences using the computed second
divided differences

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
=

6.5000− 5.0000

2− 0.5
=

1.5000

1.5000
= 1.0000.

f [x1, x2, x3, x4] =
f [x2, x3, x4]− f [x1, x2, x3]

x4 − x1
=

8.0000− 6.5000

2.5− 1
=

1.5000

1.5000
= 1.0000.

The results are outlined in the following table
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xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]

0.5000 1.1250 3.7500 5.000 1.0000
1.000 3.000 8.7500 6.5000 1.0000
1.5000 7.3750 15.2500 8.0000
2.000 15.0000 23.2500
2.5000 26.6250

5.3.2 Newton’s Interpolation Divided Difference For-
mula

The general form of Newton’s interpolation polynomial of order n for n + 1
data points is

Pn(x) = d0 + d1(x− x0) + d2(x− x0)(x− x1) + d3(x− x0)(x− x1)(x− x2) +

· · ·+ dn(x− x0)(x− x1) + d3(x− x0)(x− x1)(x− x2) · · · (x− xn−1),

where

d0 = f [x0],

d1 = f [x0, x1],

d2 = f [x0, x1, x2],

d3 = f [x0, x1, x2, x3],

...

dn = f [x0, x1, · · · , xn],

Example 39. Use the data from Example 38 to construct Newton’s inter-
polation divided difference formula, and use it to evaluate f(0), f(3), and
f(3.25).
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Solution: The Newton’s polynomial of third order for the data in the table
above is

P3(x) = d0 + d1(x− x0) + d2(x− x0)(x− x1) + d3(x− x0)(x− x1)(x− x2) =

1.1250 + 3.75(x− 0.5) + 5(x− 0.5)(x− 1) + (x− 0.5)(x− 1)(x− 1.5).

After some mathematical manipulation, we have

P3(x) = x3 + 2x2 − x+ 1.

Hence,

f(0) = P3(0) = 1, f(3) = P3(3) = 43, f(3.25) = P3(3.25) = 53.2031.

5.4 Extrapolation

In numerical analysis, extrapolation is used to estimate a value of a function
at a point beyond the range of its known values x0, x1, · · · , xn. Extrapola-
tion compared to interpolation is more likely to produce meaningless results.
There are many methods in extrapolation, in these notes, we consider the
linear and polynomial extrapolation.

5.4.1 Linear Extrapolation

Linear extrapolation is used to estimate an approximately linear function
by extending its graph not far away from its known values. Assume that
we have a set of values of some unknown function f at some points in its
domain. Let the function f has values yn−1 and yn at the points xn−1 and
xn respectively. We can estimate the function value y at the point x near
the points xn−1 and xn by constructing a tangent line to the data points
(xn−1, yn−1) and (xn, yn) to obtain

y(x) = yn−1 +
x− xn−1
x− xn

(yn − yn−1).

Note that when xn−1 < x < xn then the extrapolation is turned to
interpolation process.

Example 40. Use the following two points (0.1, 1.1) and (0.35, 1.35) to ex-
trapolate the value of the unknown function f at x = 0.
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Solution: The general formula of the linear extrapolation is

y(x) = y1 +
x− x1
x− x2

(y2 − y1).

Here x1 = 0.1, y1 = 1.1, x2 = 0.35, and y2 = 1.35.

Substituting these values in the linear extrapolation formula, we have

y(0) = 1.1 +
0− 0.1

0− 0.35
(1.35− 1.1) = 1.1 +

0.1

0.35
(0.25) = 1.1714.

5.4.2 Polynomial Extrapolation

To approximate a function by a high order polynomial near the end of a given
set of data or at a point beyond the original observed values, Lagrange in-
terpolation or Newton interpolation can be used to extrapolate the resulting
polynomial at the required data. Care has to be taken since the extrapola-
tion error will grow due to the Runge’s Phenomenon.

Example 41. Use the data in the table below to extrapolate f(600)

x 300 400 500
f(x) 0.616 0.525 0.457

Solution: Constructing the divided difference table of the data

xi fi f [xi, xi+1] f [xi, xi+1, xi+2]

300 0.616 −0.00091 0.00000115
400 0.525 −0.00068
500 0.457

From the table in above, we can write out the Newton’s difference poly-
nomial as follows:

P2(x) = d0 + d1(x− x0) + d2(x− x0)(x− x1) =

0.616− 0.00091(x− 300) + 0.00000115(x− 300)(x− 400).
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After some simplifications, we have

P2(x) = 0.00000115x2 − 0.00175x+ 1.0270.

So

f(300) ≈ P2(300) = 0.00000115(300)2 − 0.00175(300) + 1.0270 = 0.391.

5.5 Some Important MATLAB Functions in

Numerical Analysis

Using fzero function to evaluate roots of an equation

The MATLAB function fzero is used to find the real roots of a single equa-
tion. The general syntax of the function is

>> f z e r o ( f , r 0 )

where f is the function which we want to find its roots and r0 is the initial
guess. Let us consider the function in Example 14 for using Newton-Raphson
Method

>> f z e r o (@( x ) 3∗x−exp ( x ) , 1 . 5 )

ans =

1.512134551657843

There is another version of this function is

>> f z e r o ( f , [ a b ] )

where a and b are such that a ≤ r ≤ b. For example, consider the problem
in Example 10
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>> f z e r o (@( x ) x∗ s i n ( x)−1 , [ 0 . 5 1 . 5 ] )

ans =

1.114157140871930

The MATLAB builtin function roots is a powerful tool for finding the
roots of the polynomials and its syntax is

>> x = roo t s ( c )

where c is the vector of coefficients of the underlying polynomial. For
example, applying this function for the polynomial in Example 11, we have

>> c = [ 2 −1 1 −1];
x = roo t s ( c )

x =

−0.119491810752253 + 0.813834558901752 i
−0.119491810752253 − 0.813834558901752 i
0.738983621504507 + 0.000000000000000 i

Also, we can use the MATLAB function polyval(c, x) to evaluate the value
of the polynomial whose coefficient vector is c at x.

>> x = 0 ;
>> c = [ 1 1 1 ] ;
>> y = po lyva l ( c , x )

y =

1

To solve a linear system AX = B in MATLAB we can use the backslash or
”Left Division” operator as follows

>> X = A\ B
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or, using the inverse function as in

>> X = inv (A)∗B

For example, consider the solution of the linear system in Example 27

>> A = [ 1 2 −1 4 ; 2 1 1 1 ; −3 −1 4 1 ; 1 1 −1 3 ] ;
>> B = [12 10 2 6 ] ’ ;
>> X=A\B

X =

0.857142857142858
5.285714285714286
2.285714285714286
0.714285714285714

>> ra t (X)

ans =

4 1 8 char array

’1 + 1/(−7) ’
’5 + 1/(4 + 1/(−2)) ’
’2 + 1/(3 + 1/(2 ) ) ’
’1 + 1/(−4 + 1/ ( 2 ) ) ’

or

>> X = inv (A)∗B

X =

0.857142857142857
5.285714285714288
2.285714285714286
0.714285714285714

We note that the solutions obtained using these two MATLAB functions are
equal.
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MATLAB has a builtin function lu which can be used to find the LU (Doolit-
tle) factorisation of a given matrix A as following

>> [ L U] = lu (A)

as in the following example (Example)

>> A = [ 2 −3 1 ; 1 1 −1; −1 1 −1];
>> [ L U] = lu (A)

L =

1.0000 0 0
0 .5000 1 .0000 0
−0.5000 −0.2000 1 .0000

U =

2.0000 −3.0000 1 .0000
0 2 .5000 −1.5000
0 0 −0.8000

We can check that the results are correct by computing the original matrix
A as

>> L∗U

ans =

2 −3 1
1 1 −1
−1 1 −1

Now, we can solve the problem by implementing the following steps:

>> B = [ 2 ; −1; 0 ] ;
>> Y = L\B
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Y =

2.0000
−2.0000

0 .6000

>> X = U\Y

X =

−0.5000
−1.2500
−0.7500

Also, Cholesky decomposition of a given matrix A can be computed by using
the MATLAB builtin function chol which has the following syntax

>> U = cho l (A)

where A is the given matrix and U is the upper triangular matrix such that
A = U ′U . As an example we consider the following problem.

>> A = [ 2 1 0 ; 1 2 1 ; 0 1 2 ] ;
>> U = cho l (A)

U =

1.4142 0 .7071 0
0 1 .2247 0 .8165
0 0 1 .1547

We can test now the correctness of the factorisation of the matrix A by com-
puting it as

>> U’∗U

ans =

2.0000 1 .0000 0
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1 .0000 2 .0000 1 .0000
0 1 .0000 2 .0000

To generate the solution, we solve the following lower and upper triangular
linear systems respectively

>> B = [−1 −4 2 ] ’ ;
>> Y = U’\B

Y =

−0.7071
−2.8577

3 .7528

>> X = U\Y

X =

1.7500
−4.5000

3 .2500

MATLAB has another powerful tool for solving linear and as well nonlin-
ear systems which is solve function and the general syntax of this function
is

[ S1 , S2 , . . . , SN] = s o l v e ( eq1 , eq2 , . . . , eqN)

where eq1, eq2, · · · , eqN are symbolic equations (also can be symbolic in-
equalities and expressions), and S1, S2, · · · , SN is the required solution to
this system of equations. For example, let us consider the linear system in
Example 30:

>> syms x1 x2 x3
>> [ x1 , x2 , x3 ] = s o l v e (−2∗x1 + x2 + 5∗x3 == 15 , 4∗x1 − 8∗x2 +
x3 == −21, 4∗x1 − x2 + x3 == 7)

x1 =

2
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x2 =

4

x3 =

3

Now, we solve the nonlinear problem in Example 17 using this function to
have

>> syms x
>> s o l v e ( xˆ3+3∗x−2)

ans =

root ( z ˆ3 + 3∗ z − 2 , z , 1)

The MATLAB builtin function polyfit can be used to find the coeffi-
cients of the polynomial P (x) of degree n that fits the data y0 = f(x0), y1 =
f(x1), · · · , yn = f(xn), its syntax is

p o l y f i t (x , y , n )

We apply this function for solving the problem in Example 38

>> x = [ 0 . 5 1 1 .5 2 2 . 5 ] ;
>> y = [ 1 . 1 2 5 0 3 .000 7 .3750 15.0000 2 6 . 6 2 5 0 ] ;
>> p = p o l y f i t (x , y , 4 )

p =

−0.000000000000003 1.000000000000026 1.999999999999929
−0.999999999999921 0.999999999999972

Now, we can use the function polyval to compute

95 Mohammad Sabawi/Numerical Analysis



CHAPTER 5. INTERPOLATION AND EXTRAPOLATION

>> x data = [ 0 3 3 . 2 5 ] ;
>> y data = po lyva l (p , x data )

y data =

0.999999999999972 42.999999999999993 53.203124999999986
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Chapter 6

Numerical Differentiation

6.1 Introduction

Computing the derivative of an unknown function or sometimes complicated
function is not uneasy task and it is of essential importance in solving the
ordinary and partial differential equations.

6.2 Differentiation Formulas

We know from calculus that the derivative of a function f at x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

To derive the finite difference approximations of the derivatives of a func-
tion f at x0 we need the forward and backward Taylor series expansions of
f as follows:

f(x+ h) = f(x) + hf
′
(x) +

h2

2!
f
′′

+
h3

3!
f
′′′

+
h4

4!
f (4) + · · · (6.1)

f(x− h) = f(x)− hf ′(x) +
h2

2!
f
′′ − h3

3!
f
′′′

+
h4

4!
f (4) − · · · (6.2)

f(x+ 2h) = f(x) + 2hf
′
(x) +

(2h)2

2!
f
′′

+
(2h)3

3!
f
′′′

+
(2h)4

4!
f (4) + · · · (6.3)

f(x− 2h) = f(x)− 2hf
′
(x) +

(2h)2

2!
f
′′ − (2h)3

3!
f
′′′

+
(2h)4

4!
f (4) − · · · (6.4)
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The sum of (6.1) and (6.2) give us

f(x+ h) + f(x− h) = 2f(x) + h2f
′
(x) + h2f

′′
+
h4

12
f (4) + · · · (6.5)

The difference of (6.1) and (6.2) is

f(x+ h)− f(x− h) = 2hf
′
(x) +

h3

3
f (′′′) + · · · . (6.6)

Adding (6.3) and (6.4) yields

f(x+ 2h) + f(x− 2h) = 2f(x) + 4h2f
′′

+
4h4

3
f (4) + · · · . (6.7)

Subtracting (6.4) from (6.3) results in

f(x+ 2h)− f(x− 2h) = 4hf
′
+

8h3

3
f (′′′) + · · · . (6.8)

We notice that the sums formulas contain even derivatives while the dif-
ference formulas contain odd derivatives. Solving Eq. (6.1) for f

′
(x) yields

the forward difference formula

f ′(x) =
f(x+ h)− f(x)

h
. (6.9)

From Eq. (6.1) we obtain the backward difference formula

f ′(x) =
f(x)− f(x− h)

h
. (6.10)

By solving Eq. (6.6) for f
′
(x) we obtain the central difference formula

f ′(x) =
f(x+ h)− f(x− h)

2h
. (6.11)
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Chapter 7

Numerical Integration

7.1 Introduction

In solving daily life problems, we sometimes encountered with integrations
problems whose integrals cannot be computed analytically. In these scenarios
we resort to numerical integration to integrate these problems numerically by
using approximating methods. In these lecture notes, we focus on Newton-
Cotes formulas of integration.

7.2 Newton-Cotes Formulas of Integration

Newton-Cotes quadrature formulas are numerical formulas used to approxi-
mate the definite integral

∫ b

a
f(x) dx. In these formulas the function of inte-

gration or the integrand is replaced by an interpolating polynomial. These
integration rules are said to be closed if they include the function values at
the end of the integration interval. Otherwise, they are called open.

7.2.1 Closed Newton-Cotes Integration Rules

The general structure of these formulas is as follows: Let a = x0, b = xn and
the step size h = b−a

n
, then the internal integration points can be defined by

xi = x0 + ih, i = 1, · · · , n, where fi = f(xi), i = 0, · · · , n. Here, we consider
some of these closed rules such as:

(a) Trapezoid Rule: ∫ x1

x0

f(x) dx =
1

2
h[f0 + f1].
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(b) Simpson’s 1
3

Rule:∫ x2

x0

f(x) dx =
1

3
h[f0 + 4f1 + f2].

(c) Simpson’s 3
8

Rule:∫ x3

x0

f(x) dx =
3

8
h[f0 + 3f1 + 3f2 + f3].

(d) Boole’s Rule:∫ x4

x0

f(x) dx =
2

45
h[7f0 + 32f1 + 12f2 + 32f3 + 7f4].

(e) Six-Point Newton-Cotes Closed Rule:∫ x5

x0

f(x) dx =
5

288
h[19f0 + 75f1 + 50f2 + 50f3 + 75f4 + 19f5].

Example 42. Consider the function f(x) = ex
2
, use the above-mentioned

quadrature rules to approximate the integral
∫ 0.6

0
ex

2
dx.

Solution: Let us divide the interval of integration I = [a, b] = [0, 0.6] to six
equal subintervals (i.e. n = 6). Hence, h = (b − a)/n = (0.6 − 0)/6 = 0.1.
The function values at the end points are:

f0 = f(x0) = ex
2
0 = e(0)

2

= 1,

and
f6 = f(x6) = ex

2
6 = e(0.6)

2

= 1.43332941.

Now, we compute the points of integration xi = x0 + ih, i = 1, · · · , 6.

So, when i = 1

x1 = x0 + h = 0 + 0.1 = 0.1, f1 = f(x1) = ex
2
1 = e(0.1)

2

= 1.01005017,

when i = 2

x2 = x0 + 2h = 0 + 2(0.1) = 0.2, f2 = f(x2) = ex
2
2 = e(0.2)

2

= 1.04081078,

when i = 3

x3 = x0 + 3h = 0 + 3(0.1) = 0.3, f3 = f(x3) = ex
2
3 = e(0.3)

2

= 1.09417428,
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when i = 4

x4 = x0 + 4h = 0 + 4(0.1) = 0.4, f4 = f(x4) = ex
2
4 = e(0.4)

2

= 1.17351087,

when i = 4

x5 = x0 + 5h = 0 + 5(0.1) = 0.5, f5 = f(x5) = ex
2
5 = e(0.5)

2

= 1.28402542,

The computations are summarised in the table below:

x f(x)
0 1

0.1 1.01005017
0.2 1.04081078
0.3 1.09417428
0.4 1.17351087
0.5 1.28402542
0.6 1.43332941

(a) Trapezoid Rule: The interval of integration is I = [a, b] = [0, 0.6], so,
n = 1. Hence, h = (b− a)/n = (0.6− 0)/1 = 0.6. The function values at
the end points x0 = 0 and x1 = 0.6 are:

f0 = f(x0) = ex
2
0 = e(0)

2

= 1,

and
f1 = f(x1) = ex

2
6 = e(0.6)

2

= 1.43332941.

Consequently, we get∫ x1

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
1

2
h[f0+f1] =

1

2
(0.6)[1+1.43332941] = 0.72999882.

(b) Simpson’s 1
3

Rule: We divide the integration interval I = [a, b] =
[0, 0.6] to two equal subintervals (i.e. n = 2). Hence, h = (b − a)/n =
(0.6 − 0)/2 = 0.3. The integration nodes are x0 = 0, x1 = x0 + h =
0+(1)(0.3) = 0.3, and x2 = 0.6. The functional values at the integration
nodes are:

f0 = 1, f1 = f(x1) = ex
2
1 = e(0.3)

2

= 1.09417428, f2 = 1.43332941.

∫ x2

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
1

3
h[f0 + 4f1 + f2] =

1

3
(0.3)[1 + 4(1.09417428)

+1.43332941] = 0.68100265.
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(c) Simpson’s 3
8

Rule: In this rule, we divide the integration interval I =
[0, 0.6] to three equal subintervals (i.e. n = 3). Hence, h = (b − a)/n =
(0.6 − 0)/3 = 0.2. The integration nodes are x0 = 0, x1 = x0 + (1)h =
0 + (1)(0.2) = 0.2, x2 = x0 + 2h = 0 + 2(0.2) = 0.4 and x3 = 0.6. The
functional values at the integration nodes are:

f0 = 1, f1 = 1.04081078, f2 = 1.17351087, f3 = 1.43332941.∫ x3

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
3

8
h[f0 + 3f1 + 3f2 + f3] =

3

8
(0.2)[1 + 3(1.04081078)

+3(1.17351087) + 1.43332941] = 0.68072208.

(d) Boole’s Rule: In Boole’s rule, we divide the integration interval I =
[0, 0.6] to four equal subintervals, n = 4. So, h = (b−a)/n = (0.6−0)/4 =
0.15. The integration nodes are x0 = 0, x1 = x0 + (1)h = 0 + (1)(0.15) =
0.15, x2 = x0 +2h = 0+2(0.15) = 0.3, x3 = x0 +3h = 0+3(0.15) = 0.45
and x4 = 0.6. The functional values at the integration nodes are:

f0 = 1, f1 = 1.02275503, f2 = 1.09417428, f3 = 1.22446006, f4 = 1.43332941.∫ x4

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
2

45
h[7f0 + 32f1 + 12f2 + 32f3 + 7f4]

=
2

45
(0.15)[7(1) + 32(1.02275503) + 12(1.09417428)

+32(1.22446006) + 7(1.43332941)] = 0.68049520.

(e) Six-Point Newton-Cotes Closed Rule: We divide the integration
interval I = [0, 0.6] to five equal subintervals, n = 5. So, h = (b −
a)/n = (0.6 − 0)/5 = 0.12. The integration nodes are x0 = 0, x1 =
x0 + (1)h = 0 + (1)(0.12) = 0.12, x2 = x0 + 2h = 0 + 2(0.12) = 0.24,
x3 = x0 + 3h = 0 + 3(0.12) = 0.36, x4 = x0 + 4h = 0 + 4(0.12) = 0.48
and x5 = 0.6. The functional values at the integration nodes are:

f0 = 1, f1 = 1.01450418, f2 = 1.05929119, f3 = 1.13837294, f4 = 1.25910355,

f5 = 1.43332941.

∫ x5

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
5

288
h[19f0 + 75f1 + 50f2 + 50f3 + 75f4 + 19f5]

=
5

288
(0.12)[19(1) + 75(1.01450418) + 50(1.05929119)

+50(1.13837294) + 75(1.25910355) + 19(1.43332941)] = 0.68049384.
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7.2.2 Open Newton-Cotes Integration Rules

The general structure of these formulas is the same as the general structure of
the closed rules except that the two end points x0 = a, xn = b and their func-
tional values f(x0) = f(a), f(xn) = f(b) are not included in the integrations
formulas. We consider the following open rules:

(a) Midpoint Rule: ∫ x2

x0

f(x) dx = 2hf1.

(b) Two-Point Newton-Cotes Open Rule:∫ x3

x0

f(x) dx =
3

2
h[f1 + f2].

(c) Three-Point Newton-Cotes Open Rule:∫ x4

x0

f(x) dx =
4

3
h[2f1 − f2 + 2f3].

(d) Four-Point Newton-Cotes Open Rule:∫ x5

x0

f(x) dx =
5

24
h[11f1 + f2 + f3 + 11f4].

(e) Five-Point Newton-Cotes Open Rule:∫ x6

x0

f(x) dx =
6

20
h[11f1 − 14f2 + 26f3 − 14f4 + 11f5].

Example 43. Redo Example 42 use the above-mentioned quadrature open
rules to approximate the integral

∫ 0.6

0
ex

2
dx.

(a) Midpoint Rule: We divide the integration interval I = [0, 0.6] to two
equal subintervals, n = 2. So, h = (b − a)/n = (0.6 − 0)/2 = 0.3, so,
x0 = 0, x1 = x0 + (1)h = 0 + (1)(0.3) = 0.3 and x2 = 0.6. The function
values at the integration points are:

f0 = 1, f1 = 1.09417428, f2 = 1.43332941.∫ x2

x0

f(x) dx =

∫ 0.6

0

ex
2

dx = 2hf1 = 2(0.3)(1.09417428) = 0.65650457.
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(b) Two-Point Newton-Cotes Open Rule: Now, we divide the interval
of integration I = [0, 0.6] to three equal subintervals, i.e. n = 3. So,
h = (b − a)/n = (0.6 − 0)/3 = 0.2, so, x0 = 0, x1 = x0 + (1)h =
0 + (1)(0.2) = 0.2, x2 = x0 + (2)h = 0 + (2)(0.2) = 0.4 and x3 = 0.6. The
functional values at the integration nodes are:

f0 = 1, f1 = 1.04081078, f2 = 1.17351087, f3 = 1.43332941.

∫ x3

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
3

2
h[f1 + f2] =

3

2
(0.2)[1.04081078 + 1.17351087]

= 0.66429650.

(c) Three-Point Newton-Cotes Open Rule: In this rule, the interval of
integration I = [0, 0.6] is divided to four equal subintervals, i.e. n = 4.
So, h = (b − a)/n = (0.6 − 0)/4 = 0.15, so, x0 = 0, x1 = x0 + (1)h =
0 + (1)(0.15) = 0.15, x2 = x0 + (2)h = 0 + (2)(0.15) = 0.3, x3 =
x0 +(3)h = 0+(3)(0.15) = 0.45 and x4 = 0.6. The values of the function
at the integration nodes are:

f0 = 1, f1 = 1.02275503, f2 = 1.09417428, f3 = 1.22446006, f4 = 1.43332941.

∫ x4

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
4

3
h[2f1 − f2 + 2f3] =

4

3
(0.15)[2(1.02275503)

−1.09417428 + 2(1.22446006)] = 0.68005118.

(d) Four-Point Newton-Cotes Open Rule: We divide the interval of
integration I = [0, 0.6] to five equal subintervals, i.e. n = 5. So, h =
(b − a)/n = (0.6 − 0)/5 = 0.12, hence, x0 = 0, x1 = x0 + (1)h =
0 + (1)(0.12) = 0.12, x2 = x0 + (2)h = 0 + (2)(0.12) = 0.24, x3 =
x0 + (3)h = 0 + (3)(0.12) = 0.36, x4 = x0 + (4)h = 0 + (4)(0.12) = 0.48
and x5 = 0.6. The function values at the integration nodes are:

f0 = 1, f1 = 1.01450418, f2 = 1.05929119, f3 = 1.13837294, f4 = 1.25910355,

f5 = 1.43332941.

∫ x5

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
5

24
h[11f1 + f2 + f3 + 11f4] =

5

24
(0.12)[11(1.01450418)

+1.05929119 + 1.13837294 + 11(1.25910355)] = 0.68018373.
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(e) Five-Point Newton-Cotes Open Rule: In this rule, the interval of
integration I = [0, 0.6] is divided to six equal subintervals, i.e. n = 6.
So, h = (b − a)/n = (0.6 − 0)/6 = 0.1, so, x0 = 0, x1 = x0 + (1)h =
0 + (1)(0.1) = 0.1, x2 = x0 + (2)h = 0 + (2)(0.1) = 0.2, x3 = x0 + (3)h =
0 + (3)(0.1) = 0.3, x4 = x0 + (4)h = 0 + (4)(0.1) = 0.4, x5 = x0 + (5)h =
0 + (5)(0.5) = 0.4 and x6 = 0.6. The values of the function at the
integration nodes are:

f0 = 1, f1 = 1.01005017, f2 = 1.04081078, f3 = 1.09417428, f4 = 1.17351087,

f5 = 1.28402542, f6 = 1.43332941.

∫ x6

x0

f(x) dx =

∫ 0.6

0

ex
2

dx =
6

20
h[11f1 − 14f2 + 26f3 − 14f4 + 11f5]

=
6

20
(0.1)[11(1.01005017)− 14(1.04081078) + 26(1.09417428)−

14(1.17351087) + 11(1.28402542)] = 0.68048579.
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Chapter 8

Numerical Solutions for
Ordinary Differential Equations

8.1 Introduction

In the real world around us there are a plenty of phenomena and problems,
their models are ordinary differential equations (ODEs). As an classic exam-
ple is Newton’s law of motion and Loktta-Volterra equation. The ODE (or
ode) is called an initial value problem if all the conditions on the problem
are given at some starting value of the independent variable, and this con-
dition is called the the initial condition. On the other hand, the ODE is
termed boundary value problem when the conditions of the problem are
specified at the boundary of the problem and as special case the problem is
said to be two-point boundary value problem if these conditions are given at
two points on the boundary of some region of interest, these conditions are
called boundary conditions.

8.2 Taylor Series Method

Taylor series is used to write most functions as power series. Let us consider
the Taylor expansion of the function y:

y(t+ h) = y(t) + hy
′
(t) +

1

2!
h2y

′′
(t) +

1

3!
h3y

′′′
(t)

+
1

4!
h4y4(t) + · · ·+ 1

m!
hmym(t) + · · · . (8.1)

Remember that this is infinite series, and for practical applications the
series is truncated after m + 1 terms. If h is small and the derivatives
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y
′
(t), y

′′
(t), y

′′′
(t), y4(t), · · · ym(t) are known, then we can compute y(t+h) in

somehow accurate way. If we truncate the series after the term 1
m!
hmym(t)

then the method is called the Taylor series method of order m. The
simplest method when m = 1 is called Euler method.

8.3 Euler Method

Euler method is the simplest method for solving the ordinary differential
equations, It serves as a simple model for theoretical studies and investiga-
tions and rarely used in practice. It is used as the basis for studying more
complicated and advanced methods and techniques. Euler method is used
for solving the well-posed initial value problem

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = y0. (8.2)

To derive Euler approximation of this model, we use only the linear terms
in Taylor series:

y(t) = y(t0) + (t− t0)y
′
(t0) +

(t− t0)2

2
y
′′
(ξ),

where ξ ∈ [a, b], and define h = t − t0 as the increment in t, and also
called the step size, we get

y(t) = y(t0) + hy
′
(t0) +O(h2),

if h is small enough, then the error = O(h2) = h2

2
y
′′
(ξ) is smaller and can

neglected to obtain

y(t) = y(t0) + hy
′
(t0).

Once we computed y at t0 +h then, we can compute its value at the next
point i.e. y(t0 + 2h and so on. Hence, the general formula is:

yn+1 = yn + hy
′

n. (8.3)

This is the Euler method, or also called Euler-Cauchy method or
point-slope method.

We approximate the continuous solution of this problem by a discrete
approximation at some points in the domain interval [a, b], these points are
termed mesh points, grid points or collocation points. Once the discrete
solution is computed at these mesh points, the approximate solution at the
other points can be obtained by interpolation or extrapolation.
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8.4 Runge-Kutta Methods

The simple Euler method is derived by using one term of Taylor series expan-
sion about t = t0. The modified Euler method is derived by using two terms
of Taylor series. Two German mathematicians Runge and Kutta derived new
methods by using more terms than the first two terms in the Taylor series.
These methods are called Runge-Kutta methods after them.

Second Order Runge Kutta Method

We start with simplest Runge-Kutta methods which is the second order
Runge-Kutta method.

The general form of the second order Runge-Kutta method is:

y(t+ h) = y(t) + w1hf(t, y) + w2hf(t+ αh, y + βhf(t, y)), (8.4)

or, equivalently,

y(t+ h) = y(t) + w1K1 + w2K2, (8.5)

where {
K1 = hf(t, y),

K2 = hf(t+ αh, y + βK1).

The objective is to find the values of the unknowns w1, w2, α and β such
that the Eq. (8.4) is as accurate as possible. Using Taylor series expansion
of terms up to the third order, we have

w1 =
1

2
, w2 =

1

2
, α = 1, β = 1.

This results in

y(t+ h) = y(t) +
h

2
f(t, y) +

h

2
f(t+ h, y + hf(t, y)), (8.6)

or,

y(t+ h) = y(t) +
1

2
(K1 +K2), (8.7)

where {
K1 = hf(t, y),

K2 = hf(t+ h, y +K1).
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Third Order Runge Kutta Method

The formula of the Runge-Kutta method of order three is:

y(t+ h) = y(t) +
1

6
(K1 + 4K2 +K3), (8.8)

where 
K1 = hf(t, y),

K2 = hf(t+ 1
2
h, y + 1

2
K1),

K3 = hf(t+ h, y − hK1 + 2hK2),

Fourth Order Runge Kutta Method

The classical formula of the Runge-Kutta method of order four is:

y(t+ h) = y(t) +
1

6
(K1 + 2K2 + 2K3 +K4), (8.9)

where


K1 = hf(t, y),

K2 = hf(t+ 1
2
h, y + 1

2
K1),

K3 = hf(t+ 1
2
h, y + 1

2
K2),

K4 = hf(t+ h, y +K3),

Fifth Order Runge Kutta Method

This method was derived by Butcher in 1964. The formula of the Runge-
Kutta method of order five is:

y(t+ h) = y(t) +
h

90
(7K1 + 32K2 + 2K3 + 12K4 + 32K5 + 7K6), (8.10)

where



K1 = hf(t, y),

K2 = hf(t+ 1
4
h, y + 1

4
hK1),

K3 = hf(t+ 1
4
h, y + 1

8
hK1 + 1

8
hK2),

K4 = hf(t+ 1
2
h, y − 1

2
hK2 + hK3),

K5 = hf(t+ 3
4
h, y + 3

16
hK1 + 9

16
hK4),

K6 = hf(t+ h, y − 3
7
hK1 + 2

7
hK2 + 12

7
hK3 − 12

7
hK4 + 8

7
hK5),
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8.5 Midpoint Method

The midpoint method is a special case of Runge-Kutta method of order 2,
if we assume that w2 = 1 implies w1 = 0 and α = β = 1

2
, then Eq. (8.4)

becomes

y(t+ h) = y(t) + hf(t+
1

2
h, y +

1

2
hf(t, y)), (8.11)

or, equivalently,

y(t+ h) = y(t) + hK2, (8.12)

where {
K1 = hf(t, y),

K2 = hf(t+ 1
2
h, y + 1

2
hK1).
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