Norms of Matrices and Vectors

Lecture Notes

Mohammad Sabawi

Department of Mathematics College of Education for Women Tikrit University

Email: mohammad.sabawi@tu.edu.iq

01 October 2021

0.1 Norms of Matrices and Vectors

In error and convergence analyses we need a measure to determine the distance (difference) between the exact solution and approximate solution or to determine the differences between consecutive approximations.

Definition 1 (Vector Norm). A vector norm is a real-valued function $\|.\|: \mathbb{R}^n \to \mathbb{R}$ satisfies the following conditions:

- (i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- (ii) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^n$.
- (iii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$.
- (iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (Triangle Inequality).

Definition 2 (l_1 Vector Norm). Let $\mathbf{x} = (x_1, x_2, \dots, x_n)'$. Then the l_1 norm for the vector \mathbf{x} is defined by

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Definition 3 (Euclidean Vector Norm). Let $\mathbf{x} = (x_1, x_2, \dots, x_n)'$. Then the **Euclidean norm** $(l_2 \text{ norm})$ for the vector \mathbf{x} is defined by

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

Definition 4 (Maximum Vector Norm). Let $\mathbf{x} = (x_1, x_2, \dots, x_n)'$. Then the maximum norm $(l_{\infty} \text{ norm})$ for the vector \mathbf{x} is defined by

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Remark 1. Note that when n = 1 both norms reduce to the absolute value function of real numbers.

Example 1. Determine the l_1 norm, l_2 norm and l_{∞} norm of the vector $\mathbf{x} = (1, 0, -1, 2, 3)'$.

Solution: The required norms of vector $\mathbf{x} = (1, 0, -1, 2, 3)'$ in \mathbb{R}^5 are:

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{5} |x_{i}| = |x_{1}| + |x_{2}| + |x_{3}| + |x_{4}| + |x_{5}| = |1| + |0| + |-1| + |2| + |3| = 7,$$

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{5} x_{i}^{2}\right)^{1/2} = \left(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2}\right)^{1/2}$$
$$= \left((1)^{2} + (0)^{2} + (-1)^{2} + (2)^{2} + (3)^{2}\right)^{1/2} = \left(15\right)^{1/2}$$

and

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le 5} |x_i| = \max\{|x_1|, |x_2|, |x_3|, |x_4|, |x_5|\}$$

= max{|1|, |0|, | - 1|, |2|, |3|} = 3.

Definition 5 (Matrix Norm). A matrix norm is a real-valued function $\|.\|: \mathbb{R}^{n \times m} \to \mathbb{R}$ satisfies the following conditions:

- (i) $||A|| \ge 0$ for all $A \in \mathbb{R}^{n \times m}$.
- (ii) ||A|| = 0 if and only if $A = \mathbf{0}$ for all $A \in \mathbb{R}^{n \times m}$.
- (iii) $\|\alpha A\| = |\alpha| \|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times m}$.
- (iv) $||A + B|| \le ||A|| + ||B||$ for all $A, B \in \mathbb{R}^{n \times m}$ (Triangle Inequality).

If matrix norm is related to a vector norm, then we have two additional properties:

- (v) $||AB|| \leq ||A|| ||B||$ for all $A, B \in \mathbb{R}^{n \times m}$.
 - (vi) $||A\mathbf{x}|| \leq ||A|| ||\mathbf{x}||$ for all $A \in \mathbb{R}^{n \times m}$ and $\mathbf{x} \in \mathbb{R}^n$.

We give here some equivalent definitions of the matrix norm particularly when matrix norm is related to the vector norm.

Definition 6 (Subordinate Matrix Norm). Let A is a $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$, then the subordinate matrix norm is defined by

$$||A|| = \sup\{||A\mathbf{x}|| : \mathbf{x} \in \mathbb{R}^n and ||\mathbf{x}|| = 1\}.$$

or, alternatively

$$||A|| = \max_{\|\mathbf{x}\|=1} ||A\mathbf{x}||.$$

Definition 7 (Natural Matrix Norm). Let A is a $n \times n$ matrix and for any $\mathbf{z} \neq \mathbf{0}$, and $\mathbf{x} = \frac{\mathbf{z}}{\|\mathbf{z}\|}$ is the unit vector. Then the **natural** / **reduced matrix** norm is defined by

$$\max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = \max_{\mathbf{z}\neq 0} \left\| A\left(\frac{\mathbf{z}}{\|\mathbf{z}\|}\right) \right\| = \max_{\mathbf{z}\neq 0} \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|},$$

or, alternatively

$$\|A\| = \max_{\mathbf{z}\neq 0} \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|}.$$

Definition 8 (l_1 Matrix Norm). Let A is a $n \times n$ matrix and $\mathbf{x} = (x_1, x_2, \dots, x_n)'$. Then the l_1 matrix norm is defined by

$$||A||_1 = \max_{\|\mathbf{x}\|_1=1} ||A\mathbf{x}||_1 = \max_{1 \le i \le n} \sum_{i=1}^n |a_{ij}|.$$

Definition 9 (Spectral Matrix Norm). Let A is a $n \times n$ matrix and $\mathbf{x} = (x_1, x_2, \dots, x_n)'$. Then the spectral / l_2 -matrix norm is defined by

$$||A||_2 = \max_{\|\mathbf{x}\|_2=1} ||A\mathbf{x}||_2 = \max_{1 \le i \le n} \sqrt{|\sigma_{\max}|},$$

where σ_i are the eigenvalues of $A^T A$, which are called the **singular values** of A and the largest eigenvalue in absolute value ($|\sigma_{max}|$) is called the **spectral** radius of A.

Definition 10 (l_{∞} Matrix Norm). Let A is a $n \times n$ matrix and $\mathbf{x} = (x_1, x_2, \dots, x_n)'$. Then the l_{∞} (maximum)matrix norm is defined by

$$||A||_{\infty} = \max_{\|\mathbf{x}\|_{\infty}=1} ||A\mathbf{x}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Remark 2. Note that ||I|| = 1.

Example 2. Determine $||A||_{\infty}$ for the matrix

$$A = \left[\begin{array}{rrrr} 1 & -1 & 2 \\ 0 & 5 & 3 \\ -1 & 6 & -4 \end{array} \right].$$

Solution: For i = 1, we have

$$\sum_{j=1}^{3} |a_{1j}| = |a_{11}| + |a_{12}| + |a_{13}| = |1| + |-1| + |2| = 4,$$

and for i = 2, we obtain

$$\sum_{j=1}^{3} |a_{2j}| = |a_{21}| + |a_{22}| + |a_{23}| = |0| + |5| + |3| = 8,$$

for i = 3, we get

$$\sum_{j=1}^{3} |a_{3j}| = |a_{31}| + |a_{32}| + |a_{33}| = |-1| + |6| + |-4| = 11.$$

Consequently,

$$||A||_{\infty} = \max_{1 \le i \le 3} \sum_{j=1}^{3} |a_{ij}| = \max\{4, 8, 11\} = 11.$$