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0.1 Introduction

Many phenomena and relationships in nature and real life applications are
linear, meaning that results and their causes are proportional to each other.
Solving linear algebraic equations is a topic of great importance in numerical
analysis and other scientific disciplines such as engineering and physics. So-
lutions to Many problems reduced to solve a system of linear equations. For
example, in finite element analysis a solution of a partial differential equation
is reduced to solve a system of linear equations.

0.2 Norms of Matrices and Vectors

In error and convergence analyses we need a measure to determine the dis-
tance (difference) between the exact solution and approximate solution or to
determine the differences between consecutive approximations.

Definition 1 (Vector Norm). A vector norm is a real-valued function
‖.‖ : Rn → R satisfies the following conditions:
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(i) ‖x‖ ≥ 0 for all x ∈ Rn.

(ii) ‖x‖ = 0 if and only if x = 0 for all x ∈ Rn.

(iii) ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ Rn.

(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rn (Triangle Inequality).

Definition 2 (l1 Vector Norm). Let x = (x1, x2, · · · , xn)′. Then the l1 norm
for the vector x is defined by

‖x‖1 =
n∑

i=1

|xi|.

Definition 3 (Euclidean Vector Norm). Let x = (x1, x2, · · · , xn)′. Then the
Euclidean norm (l2 norm) for the vector x is defined by

‖x‖2 =
( n∑

i=1

x2i

)1/2
.

Definition 4 (Maximum Vector Norm). Let x = (x1, x2, · · · , xn)′. Then the
maximum norm (l∞ norm) for the vector x is defined by

‖x‖∞ = max
1≤i≤n

{|xi|}.

Remark 1. Note that when n = 1 both norms reduce to the absolute value
function of real numbers.

Example 1. Determine the l1 norm, l2 norm and l∞ norm of the vector
x = (1, 0,−1, 2, 3)′.

Solution: The required norms of vector x = (1, 0,−1, 2, 3)′ in R5 are:

‖x‖1 =
5∑

i=1

|xi| = |x1|+ |x2|+ |x3|+ |x4|+ |x5| = |1|+ |0|+ |−1|+ |2|+ |3| = 7,

‖x‖2 =
( 5∑

i=1

x2i

)1/2
=
(
x21 + x22 + x23 + x24 + x25

)1/2
=

(
(1)2 + (0)2 + (−1)2 + (2)2 + (3)2

)1/2
=
(

15
)1/2

,
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and

‖x‖∞ = max
1≤i≤5

{|xi|} = max{|x1|, |x2|, |x3|, |x4|, |x5|}

= max{|1|, |0|, | − 1|, |2|, |3|} = 3.

Definition 5 (Matrix Norm). A matrix norm is a real-valued function
‖.‖ : Rn×m → R satisfies the following conditions:

(i) ‖A‖ ≥ 0 for all A ∈ Rn×m.

(ii) ‖A‖ = 0 if and only if A = 0 for all A ∈ Rn×m.

(iii) ‖αA‖ = |α|‖A‖ for all α ∈ R and A ∈ Rn×m.

(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Rn×m (Triangle Inequality).

If matrix norm is related to a vector norm, then we have two additional
properties:

(v) ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ Rn×m.

(vi) ‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Rn×m and x ∈ Rn.

We give here some equivalent definitions of the matrix norm particularly
when matrix norm is related to the vector norm.

Definition 6 (Subordinate Matrix Norm). Let A is a n × n matrix and
x ∈ Rn, then the subordinate matrix norm is defined by

‖A‖ = sup{‖Ax‖ : x ∈ Rnand ‖x‖ = 1}.

or, alternatively
‖A‖ = max

‖x‖=1
‖Ax‖.

Definition 7 (Natural Matrix Norm). Let A is a n× n matrix and for any
z 6= 0, and x = z

‖z‖ is the unit vector. Then the natural / reduced matrix
norm is defined by

max
‖x‖=1

‖Ax‖ = max
z 6=0

∥∥∥A( z

‖z‖

)∥∥∥ = max
z 6=0

‖Az‖
‖z‖

,

or, alternatively

‖A‖ = max
z 6=0

‖Az‖
‖z‖

.
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Definition 8 (l1 Matrix Norm). Let A is a n×n matrix and x = (x1, x2, · · · , xn)′.
Then the l1 matrix norm is defined by

‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
1≤i≤n

n∑
i=1

|aij|.

Definition 9 (Spectral Matrix Norm). Let A is a n × n matrix and x =
(x1, x2, · · · , xn)′. Then the spectral / l2-matrix norm is defined by

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
1≤i≤n

√
|σmax|,

where σi are the eigenvalues of ATA, which are called the singular values of
A and the largest eigenvalue in absolute value (|σmax|) is called the spectral
radius of A.

Definition 10 (l∞ Matrix Norm). Let A is a n×n matrix and x = (x1, x2, · · · , xn)′.
Then the l∞ (maximum)matrix norm is defined by

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
1≤i≤n

n∑
j=1

|aij|.

Remark 2. Note that ‖I‖ = 1.

Example 2. Determine ‖A‖∞ for the matrix

A =

 1 −1 2
0 5 3
−1 6 −4

 .
Solution: For i = 1, we have

3∑
j=1

|a1j| = |a11|+ |a12|+ |a13| = |1|+ | − 1|+ |2| = 4,

and for i = 2, we obtain

3∑
j=1

|a2j| = |a21|+ |a22|+ |a23| = |0|+ |5|+ |3| = 8,

for i = 3, we get

3∑
j=1

|a3j| = |a31|+ |a32|+ |a33| = | − 1|+ |6|+ | − 4| = 11.
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Consequently,

‖A‖∞ = max
1≤i≤3

3∑
j=1

|aij| = max{4, 8, 11} = 11.

0.3 Direct Methods

Direct methods are techniques used for solving and obtaining the exact
solutions (in theory) of linear algebraic equations in a finite number of steps.
The main widely used direct methods are Gaussian elimination method
and Gauss-Jordan method.

Consider the following linear system of dimension n× (n+ 1)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn.

This system can be written in concise form by using matrix notation as
AX = B as follows:


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



x1
x2
...
xn

 =


b1
b2
...
bn

 ,
where An×n is square matrix and is called a coefficient matrix, Bn×1 is

a column vector known as the right hand side vector and Xn×1 is a column
vector known as unknowns vector. Also, this system can be written as

[A|B] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn

 ,
where [A|B] is called the augmented matrix.
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0.3.1 Backward Substitution Method

Backward substitution also called back substitution is an algorithm or
technique used for solving upper-triangular systems which are systems
such that their coefficient matrices are upper-triangular matrices. Assume
that we have the following upper-triangular system

a11x1 + a12x2 + a13x3 + · · ·+ a1n−1xn−1 + a1nxn = b1

a22x2 + a23x3 + · · ·+ a2n−1xn−1 + a2nxn = b2

a33x3 + · · ·+ a3n−1xn−1 + a3nxn = b3
...

an−1n−1xn−1 + an−1nxn = bn−1

annxn = bn.

To find a solution to this system we follow the following steps provided
that xrr 6= 0, r = 1, 2, · · · , n:

(1) Solve the last (nth) equation for xn:

xn =
bn
ann

.

(2) Substitute xn in the next-to-last ((n − 1)th) equation and solve it for
xn−1:

xn−1 =
bn−1 − an−1nxn

an−1n−1
.

(3) Now, xn and xn−1 are known and can be used to find xn−2:

xn−2 =
bn−2 − an−2n−1xn−1 − an−2nxn

an−2n−2
.

(4) Continuing in this way until we arrive at the general step:

xr =
br −

∑n
j=r+1 arjxj

arr
, r = n− 1, n− 2, · · · 1.

Example 3. Solve the following linear system using back substitution method

3x1 + 2x2 − x3 + x4 = 10

x2 − x3 + 2x4 = 9

3x3 − x4 = 1

3x4 = 6

7 Mohammad Sabawi/Numerical Analysis
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Solution: Solve the last equation for x4 to obtain

x4 =
6

3
= 2.

Substitute x4 = 2 in the third equation, we have

x3 =
1 + x4

3
=

1 + 2

3
=

3

3
= 1.

Now, use values x3 = 1 and x4 = 2 in the second equation to find x2

x2 = 9 + x3 − 2x4 = 9 + 1− 4 = 6.

Finally, solve the first equation for x1 yields

x1 =
10− 2x2 + x3 − x4

3
=

10− 12 + 1− 2

3
=
−3

3
= −1.

Example 4. Show that the following linear system has no solution

3x1 + 2x2 − x3 + x4 = 10

0x2 − x3 + 2x4 = 9

3x3 − x4 = 1

3x4 = 6

Solution: Solve the last equation for x4 to obtain

x4 =
6

3
= 2.

Substitute x4 = 2 in the third equation, we have

x3 =
1 + x4

3
=

1 + 2

3
=

3

3
= 1.

Also, from the second equation we have

x3 = 9− 2x4 = 9− 4 = 5.

This contradiction implies that the linear system in above has no solution.

Example 5. Show that the following linear system has infinitely many solu-
tions

3x1 + 3x2 − x3 + x4 = 10

0x2 + x3 + 0x4 = 1

3x3 − x4 = 1

3x4 = 6

8 Mohammad Sabawi/Numerical Analysis
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Solution: Solve the last equation for x4 to obtain

x4 =
6

3
= 2.

Substitute x4 = 2 in the third equation, we have

x3 =
1 + x4

3
=

1 + 2

3
=

3

3
= 1.

Also, from the second equation we have

x3 = 1.

Solve the first equation for x2 yields

x2 =
10− 3x1 + x3 − x4

3
=

10− 3x1 + 1− 2

3
=

9− 3x1
3

= 3− x1.

Note that the equation for x2 has infinitely many solutions since it depends
upon x1 which takes infinitely many values. Now, let x1 = 1, we have x2 = 2.
Hence the solution set of the system is:

x1 = 1, x2 = 2, x3 = 1, x4 = 2.

0.3.2 Forward Substitution Method

Forward substitution is an algorithm or technique used for solving lower-
triangular systems which are systems such that their coefficient matrices
are lower-triangular matrices.

a11x1 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 + a33x3 = b3
...

an−11x1 + an−12x2 + an−13x3 + · · ·+ an−1n−1xn−1 = bn−1

an1x1 + an2x2 + an3x3 + · · ·+ ann−1xn−1 + annxn = bn.

To find a solution to this system we follow the following steps provided
that xrr 6= 0, r = 1, 2, · · · , n:

(1) Solve the first (1st) equation for x1:

x1 =
b1
a11

.

9 Mohammad Sabawi/Numerical Analysis
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(2) Substitute x1 in the second equation (2nd) equation and solve it for x2:

x2 =
b2 − a21x1

a22
.

(3) Now, x1 and x2 are known and can be used to find x3:

x3 =
b3 − a31x1 − a32x2

a33
.

(4) Continuing in this way until we arrive at the general step:

xr =
br −

∑r−1
j=1 arjxj

arr
, r = 2, 3, · · ·n.

Example 6. Use the forward substitution method for solving the following
linear system

4x1 = 8

2x1 + 2x2 = −1

x1 − x2 + 5x3 = 0.5

0.1x1 + 2x2 − x3 + 2x4 = 2

,

Solution: Solving the first equation for x1 yields

x1 =
8

4
= 2.

Using the value of x1 to find x2

x2 =
−1− 2x1

2
=
−1− 2(2)

2
= −2.5.

Use x1 and x2 to find x3

x3 =
0.5− x1 + x2

5
=

0.5− 2− 2.5

5
=
−4

5
= −0.8.

Finally, solve for x4 to have

x4 =
2− 0.1x1 − 2x2 + x3

2
=

2− 0.1(2)− 2(−2.5)− 0.8

2
=

6

2
= 3.

10 Mohammad Sabawi/Numerical Analysis
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Example 7. Show that there is no solution to the linear system

4x1 = 8

2x1 + 2x2 = −1

x1 − x2 + 0x3 = 0.5

0.1x1 + 2x2 − x3 + 2x4 = 2

,

Solution: Solving the first equation for x1 yields

x1 =
8

4
= 2.

Using the value of x1 in the second equation to find x2

x2 =
−1− 2x1

2
=
−1− 2(2)

2
= −2.5.

From the third equation we have

x2 = x1 − 0.5 = 2− 0.5 = 1.5.

This contradiction indicates that there is no solution to the system in above.

Example 8. Show that there are infinitely many solution to the following
linear system

4x1 = 8

2x1 + 2x2 = −1

0x1 − x2 + 0x3 = 2.5

0.1x1 + 2x2 − x3 + 2x4 = 2

,

Solution: Solving the first equation for x1 yields

x1 =
8

4
= 2.

Using the value of x1 in the second equation to find x2

x2 =
−1− 2x1

2
=
−1− 2(2)

2
= −2.5.

11 Mohammad Sabawi/Numerical Analysis
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From the third equation we have

x2 = −2.5.

Solving the last equation for x3 we obtain

x3 = −2 + 0.1x1 + 2x2 + 2x4 = −2 + 0.1(2) + 2(−2.5) + 2x4 = 2x4 − 6.8,

which has infinitely many solutions. Hence, the above linear system has
infinitely many solutions. If we choose x4 = 8, then we get x3 = 10.8. So,
the solution set is:

x1 = 2, x2 = −2.5, x3 = 10.8, x4 = 8.

0.3.3 Gaussian Elimination Method

Gaussian elimination method is also known as Gauss elimination
method or simply elimination method. It is a direct method used for
solving a system of linear algebraic equations. In this method we transform
the linear system to an equivalent upper or lower triangular system and then
solve it by backward or forward substitution. The process of transforming
the linear system to an equivalent upper or lower triangular system is called
trianguarisation.

Definition 11 (Equivalent Systems). Two linear algebraic systems of dimen-
sion n × n is said to be they are equivalent if they have the same solution
sets.

Definition 12 (Elementary Transformations). The following operations per-
formed on a linear system transform it to an equivalent system:

• Interchanges: Changing the order of any two equations in the system.

• Replacement: Any equation of the system can be replaced by itself
and a nonzero multiple of any other equation in the system.

• Scaling: Multiplying any equation in the system by a nonzero real
constant.

Definition 13 (Elementary Row Operations). The following operations per-
formed on a linear system transform it to an equivalent system:

• Interchanges: Changing the order of any two rows in the matrix.

• Replacement: Any row in the matrix can be replaced by its sum and
a nonzero multiple of any other row in the matrix.

• Scaling: Multiplying any row in the matrix by a nonzero real constant.

12 Mohammad Sabawi/Numerical Analysis
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Pivoting

Pivoting is an important process used in solving linear systems in conjunction
with Gaussian elimination and there are different types of pivoting strategies
as outlined below:

1. Trivial Pivoting: The process of using the element (entry) akk in
the coefficient matrix A to eliminate the entries ark, r = k + 1, k +
2, · · ·n is called pivoting process. The element akk is called pivotal
element and the kth row is called pivotal row. If the entry akk = 0,
then the row k cannot be used to eliminate the entries ark, r = k +
1, k + 2, · · · , n and we need to find a row r such that ark 6= 0, r > k,
and then interchange the row k and the row r such that the pivotal
element is nonzero. This process is called the trivial pivoting, also,
if no interchange or switching between the rows is performed then the
process is called only pivoting or trivial pivoting.

2. Partial Pivoting: To reduce the round-off errors or propagation of
errors it is advisable to search for the the greatest element in the mag-
nitude in column r that lies on or below the main diagonal, and then
move it to the main diagonal in the pivotal row r to be the pivotal
element and use it to eliminate the entries in the column r below the
main diagonal, this process is called the partial pivoting. Determine
row k below the main diagonal in which there is the largest element in
the absolute value as follows:

akr = max{|arr|, |ar+1r|, · · · , |an−1r|, |anr|}, (1)

and then interchange the row k and row r for k > r. Now, since the
entry in the main diagonal has the larges absolute value then the values
of all the multipliers are:

|mkr| ≤ 1, k = r + 1, r + 2, · · · , n,

and this will be helpful to keep the magnitudes of elements in the
current matrix are relatively the same magnitudes of the elements in
the original coefficient matrix.

3. Scaled Pivoting: In this approach, the pivoting element is chosen to
be the largest in magnitude relative to the elements which lie in the
same row. This type of pivoting is used when the entries in the same
row vary largely in magnitude.

13 Mohammad Sabawi/Numerical Analysis



CONTENTS

4. Complete Pivoting: In this technique, we use both partial and scaled
pivoting and is sometimes referred to as scaled partial pivoting or
equilibrating. In this process, we search all the entries in the column
r that lie on or below the main diagonal for the largest entry in the
magnitude relative to the entries in its row. Hence, We interchange
both the columns and rows to find the largest entry in absolute value,
i.e. we searching for largest entry in the matrix and for this reason
this type of pivoting is also known as maximal pivoting. we start
the process by searching all the rows r to n for the largest entry in
absolute value in each row, we denote this element by pk:

pk = max{|akr|, |akr+1|, · · · , |akn−1|, |akn|}, k = r, r + 1, · · · , n. (2)

Then, to locate the pivoting row, we need to compute

akr
pk

= max{|arr
pr
|, |ar+1r

pr+1

|, · · · , |an−1r
pn−1

|, |anr
pn
|}. (3)

Then, interchange the row r and k, except the case when r = k.

Example 9. Write the following linear system in the augmented form and
then solve it by using Gauss elimination method with trivial pivoting.

x1 + 2x2 − x3 + 4x4 = 12

2x1 + x2 + x3 + x4 = 10

−3x1 − x2 + 4x3 + x4 = 2

x1 + x2 − x3 + 3x4 = 6

.

Solution: The augmented matrix is
1 2 −1 4 12
2 1 1 1 10
−3 −1 4 1 2
1 1 −1 3 6


The first row is the pivotal row, so the pivotal element is a11 = 1 and

is used to eliminate the first column below the diagonal. We will denote
by mr1 to the multiples of the row 1 subtracted from row r for r = 2, 3, 4.
Multiplying the first row by m21 = −2 and add it to the second row to have

14 Mohammad Sabawi/Numerical Analysis
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
1 2 −1 4 12
0 −3 3 −7 −14
−3 −1 4 1 2
1 1 −1 3 6

 .
Now, multiply the first row by m31 = 3 and add it to the third row to

obtain 
1 2 −1 4 12
0 −3 3 −7 −14
0 5 1 13 38
1 1 −1 3 6

 .
Multiplying the first row by m41 = −1 and adding it to the fourth row

yields 
1 2 −1 4 12
0 −3 3 −7 −14
0 5 1 13 38
0 −1 0 −1 −6

 .
Now, the pivotal row is the second row and the pivotal element is a22 =

−3. Multiply the second row by m32 = 5
3

to have
1 2 −1 4 12
0 −3 3 −7 −14
0 0 6 4/3 44/3
0 −1 0 −1 −6

 .
Multiply the the second row by m42 = −1

3
and add it to the fourth row

to obtain 
1 2 −1 4 12
0 −3 3 −7 −14
0 0 6 4/3 44/3
0 0 −1 4/3 −4/3

 .
Now, the pivotal row is the third row and the third element is a33 = 6.

Finally, multiply the third row by m43 = 1
6

to the fourth row to have
1 2 −1 4 12
0 −3 3 −7 −14
0 0 6 4/3 44/3
0 0 0 14/9 10/9

 .
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Now, note that the coefficient matrix is transformed into an upper trian-
gular matrix and can be solved by backward substitution method. Firstly,
we from the last row we compute

x4 =
10/9

14/9
=

5

7
.

Use the third row to solve for x3

x3 =
44/3− 4/3(5/7)

6
=

288/21

6
=

16

7
.

Now, solve the second equation for x2

x2 =
−14− 3x3 + 7x4

−3
=
−14− 3(16/7) + 7(5/7)

−3
=

111

21
=

37

7
.

Finally, solve the first equation for x1

x1 = 12− 2x2 + x3 − 4x4 = 12− 2(37/7) + 16/7− 4(5/7) =
6

7
.

Example 10. Solve the following linear system using Gauss elimination
method by using forward substitution technique

x1 + 2x2 + x3 + 4x4 = 13

2x1 + 0x2 + 4x3 + 3x4 = 28

4x1 + 2x2 + 2x3 + x4 = 20

−3x1 + x2 + 3x3 + 2x4 = 6

.
Solution: We start our solution strategy by transforming this square system
to equivalent lower-triangular system and then solve it by using forward
substitution method. Write the system in augmented matrix form

1 2 1 4 13
2 0 4 3 28
4 2 2 1 20
−3 1 3 2 6

 .
a b c d e


1 1 1 1 1 R1 + 2R2

0 1 0 0 1 g
0 0 1 0 1 h
0 0 0 1 1 i
0 0 0 0 1 j
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Note that now the pivotal row is the fourth row and the pivotal element
is a44 = 2. Multiply the fourth row by the multiple m14 = −2 and it to the
first row to have 

7 0 −5 0 1
2 0 4 3 28
4 2 2 1 20
−3 1 3 2 6

 .
Multiply the fourth row by m24 = −3

2
and add it to the second row to

obtain 
7 0 −5 0 1

13/2 −3/2 −1/2 0 19
4 2 2 1 20
−3 1 3 2 6

 .
Now multiply the fourth equation by m34 = −1

2
and add it to the third

row to have 
7 0 −5 0 1

13/2 −3/2 −1/2 0 19
11/2 3/2 1/2 0 17
−3 1 3 2 6

 .
The pivotal row now is the third row and the pivotal element is a33 = 1/2.

Add the third row to the second row (i.e. multiply it by m23 = 1) to get
7 0 −5 0 1
12 0 0 0 36

11/2 3/2 1/2 0 17
−3 1 3 2 6

 .
Now 

12 0 0 0 36
11/2 3/2 1/2 0 17

7 0 −5 0 1
−3 1 3 2 6

 .
The pivotal row (third row) is used to eliminate elements in the second

row and the pivotal element is a33 = −5. Multiply the third row by m23 = 1
10

to have
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
12 0 0 0 36

31/5 3/2 0 0 171/10
7 0 −5 0 1
−3 1 3 2 6

 .
Now, use forward substitution to solve the lower-triangular matrix. solve

the first equation for x1

x1 =
36

12
= 3.

Use the equation to find x2

x2 =
171/10− (31/5)3

3/2
= −1.

Now, solve the third equation for x3

x3 =
1− 7(3)

−5
= 4.

Finally, solve the fourth equation for x4

x4 =
6− (−3)(3)− 1(−1)− 3(4)

2
= 2.

0.3.4 Gauss-Jordan Elimination Method

In this method instead of transforming the coefficient matrix into upper or
lower triangular system, we transform the coefficient matrix into diagonal (in
particular identity) matrix using elementary row operations.

Example 11. Solve the following linear system using Gauss-Jordan elimi-
nation method

3x1 + 4x2 + 3x3 = 10

x1 + 5x2 − x3 = 7

6x1 + 3x2 + 7x3 = 15

.

Solution: Express the system in augmented matrix form
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 3 4 3 10
1 5 −1 7
6 3 7 15

 .
The pivot row is the first row and the pivot element is a11 = 3. Multiply

it by m11 = 1/3 to get  1 4/3 1 10/3
1 5 −1 7
6 3 7 15

 .
Subtract the second equation from the first (i.e. multiply it by m21 = −1)

and multiply the fist equation by m31 = −6 and add it to the third equation
to have  1 4/3 1 10/3

0 −11/3 2 −11/3
0 −5 1 −5

 .
Now, the pivot row is the second row and the pivot element a22 = −11/3.

Multiply it by m22 = −3/11 to have 1 4/3 1 10/3
0 1 −6/11 1
0 −5 1 −5

 .
Multiply the first and third rows by m12 = −4/3 and m32 = 5 to obtain 1 0 19/11 2

0 1 −6/11 1
0 0 −19/11 0

 .
The pivot element now is third row and the pivot element is a33 = −19/11.

Multiply it by m33 = −11/19 to get 1 0 19/11 2
0 1 −6/11 1
0 0 1 0

 .
Finally, multiply the third row by m13 = −19/11 and m23 = 6/11 and

add it to the first and second rows to have 1 0 0 2
0 1 0 1
0 0 1 0

 .
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Hence, we have x1 = 2, x2 = 1 and x3 = 0.

Example 12. Solve the following linear system using Gauss-Jordan elimi-
nation method

−2x1 + x2 + 5x3 = 15

4x1 − 8x2 + x3 = −21

4x1 − x2 + x3 = 7

.

Solution: Write the system in augmented matrix form −2 1 5 15
4 −8 1 −21
4 −1 1 7

 .
Multiply the first row by m21 = m31 = −2 and it to the second and third

rows respectively, to obtain −2 1 5 15
0 −6 11 9
0 1 11 37

 .
Now, multiply the second row by m12 = m32 = 1

6
and it to the first and

third rows respectively, to have −2 0 41/6 33/2
0 −6 11 9
0 0 77/6 77/2

 .
Finally, multiply the third row by m13 = −41

77
and m32 = −6

7
and it to the

first and third rows respectively, to obtain −2 0 0 −4
0 −6 0 −24
0 0 77/6 77/2

 ,
implies that

x1 =
−4

−2
= 2, x2 =

−24

−6
= 4 and x3 =

77/2

77/6
= 3.
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0.4 LU and Cholesky Factorisations

In this section we will discuss the triangular factorisations of matrices.

Definition 14 (Positive Definite Matrix). Let An×n be symmetric real matrix
and x ∈ Rn a nonzero vector. Then, A is said to be positive definite
matrix if A = AT and xTAx > 0 for any x.

Remark 3. Note that the matrix A is nonsingular by definition.

Definition 15 (Triangular Factorisation). Assume that A is a nonsingular
matrix. It said to be A has a triangular factorisation or triangular
decomposition if it can be factorised as a product of unit lower-triangular
matrix L and an upper triangular matrix U :

A = LU.

or in matrix form a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

 u11 u12 u13
0 u22 u23
0 0 u33

 .
Note that since A is nonsingular matrix this implies that urr 6= 0 for all

r and this is called Doolittle factorisation.

Also, A can be expressed as a product of lower-triangular matrix L and
unit upper triangular matrix U : a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 1 u12 u13
0 1 u23
0 0 1

 ,
and this is called Crout factorisation.

To solve the linear system AX = B using LU factorisation, we do the
following two steps:

1. Using forward substitution to solve the the lower-triangular linear sys-
tem LY = B for Y .

2. Using backward substitution to solve the upper-triangular linear system
UX = Y for X.
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Direct LU Factorisation Using Gaussian Elimination Method

The matrix A can be factored directly using Gauss elimination method with-
out any row interchanges. In this case the matrix A is expressed in terms
of the identity matrix I follows A = IA. We perform the row operations
on the matrix A on the right and the resulting matrix it will be the upper
triangular matrix U . The multipliers are stored in their appropriate places
in the identity matrix on the left which will be the lower triangular matrix
L. All this information is summarised in the next theorem.

Theorem 1 (Direct LU Factorisation Without Row Interchanges).
Assume that the linear system AX = B can be solved using Gaussian elim-
ination with no row interchanges. Then, the coefficient matrix A can be
factored as a product of a lower triangular matrix L and an upper triangular
matrix U as follows:

A = LU.

The matrix L has 1’s on its main diagonal and the matrix has nonzero entries
on its main diagonal. After constructing the matrices L and U then the linear
system can be solved in the following two steps:

(1). Solve the lower triangular system LY = B for Y using the forward
substitution method.

(2). Solve the upper triangular system UX = Y for X using the backward
substitution method.

Proof. For proof, see any standard text on numerical analysis or numerical
linear algebra.

The following example explains this type of LU factorisation.

Example 13. Find the LU factorisation of the following matrix using Gaus-
sian elimination without row interchanges

A =

 2 4 −1
−2 3 1
1 5 6

 .
Solution. Writing the matrix A in terms of the identity matrix as follows

A =

 2 4 −1
−2 3 1
1 5 6

 =

1 0 0
0 1 0
0 0 1

 2 4 −1
−2 3 1
1 5 6

 = IA
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The first row is used to eliminate the elements under the main diagonal
(subdiagonal elements) in the first column. The multipliers of the first row are
m21 = a21/a11 = −2/2 = −1 and m31 = a31/a11 = 1/2 = 0.5, respectively.

 2 4 −1
−2 3 1
1 5 6

 =

 1 0 0
−1 1 0
0.5 0 1

2 4 −1
0 7 0
0 3 6.5


Now, the second row is used to eliminate the entries below the main di-

agonal in the second column and the multiple of the second row is m32 =
a32/a22 = 3/7. Hence, we have the following LU factorisation of A

A =

 2 4 −1
−2 3 1
1 5 6

 =

 1 0 0
−1 1 0
1/2 3/7 1

2 4 −1
0 7 0
0 0 6.5

 = LU.

The LU Factorisation Without Using Gaussian Elimination Method

Example 14. Solve the following linear system using LU (Doolittle) decom-
position

2x1 − 3x2 + x3 = 2

x1 + x2 − x3 = −1

−x1 + x2 − x3 = 0

Solution: Express the system in matrix form 2 −3 1 2
1 1 −1 −1
−1 1 −1 0

 .
Factor A as follows: 2 −3 1

1 1 −1
−1 1 −1

 =

 1 0 0
l21 1 0
l31 l32 1

 u11 u12 u13
0 u22 u23
0 0 u33

 .
Find the values of the entries of matrices L and U . From the first column

we have
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2 = 1u11 =⇒ u11 = 2,

and

1 = l21u11 = l212 =⇒ l21 = 0.5,

finally

−1 = l31u11 = l312 =⇒ l31 = −0.5.

In the second column, we have

−3 = 1u12 =⇒ u12 = −3,

and

1 = l21u12 + 1u22 = −1.5 + u22 =⇒ u22 = 2.5,

so

1 = l31u12 + l32u22 = (−0.5)(−3) + l32(2.5) =⇒ l32 = −0.2.

Finally, in the third column we have

1 = 1u13 =⇒ u13 = 1,

and

−1 = l21u13 + 1u23 = 0.5 + u23 =⇒ u23 = −1.5,

finally,

−1 = l31u13 + l32u23 + 1u33 = −0.5(1) + (−0.2)(−1.5) +u33 =⇒ u33 = −0.8.

Now, we have the LU factorisation

A =

 2 −3 1
1 1 −1
−1 1 −1

 =

 1 0 0
0.5 1 0
−0.5 −0.2 1

 2 −3 1
0 2.5 −1.5
0 0 −0.8

 = LU.
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Now, we have the following lower-triangular linear system LY = B for Y 1 0 0
0.5 1 0
−0.5 −0.2 1

 y1
y2
y3

 =

 2
−1
0

 .
Write the system in augmented matrix form

 1 0 0 2
0.5 1 0 −1
−0.5 −0.2 1 0

 .
Solve this system by forward substitution to have

y1 = 2, y2 = −1− 0.5(y1) = −1− 0.5(2) = −2,

and

y3 = 0 + 0.5(y1) + 0.2(y2) = 0.5(2) + 0.2(−2) = 0.6.

Now, we have the following upper-triangular linear system UX = Y

 2 −3 1
0 2.5 −1.5
0 0 −0.8

 x1
x2
x3

 =

 2
−2
0.6

 .
Express the system in augmented matrix form 2 −3 1 2

0 2.5 −1.5 −2
0 0 −0.8 0.6

 .
Finally, use the values of Y to solve the upper-triangular linear system

UX = Y by back substitution to have
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x3 =
0.6

−0.8
=
−3

4
, x2 =

−2 + 1.5(x3)

2.5
=
−2 + 1.5(−3/4)

2.5
= −5/4,

and

x1 =
2 + 3(x2)− 1(x3)

2
=

2 + 3(−5/4)− (−3/4)

2
= −1/2.

Definition 16 (Cholesky Factorisation). Let A be a real, symmetric and
positive definite matrix. Then, it can be factored or decomposed in a
unique way A = LLT , in which L is a lower-triangular matrix with a positive
diagonal, and is termed Cholesky factorisation. a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33

 .
Example 15. (a) Determine the Cholesky decomposition of the matrix

A =

 2 −1 2
−1 3 3
2 3 2


(b) Then, use the decomposition from part (a) to solve the linear system

2x1 − x2 + 2x3 = −1

−x1 + 3x2 + 3x3 = −4

2x1 + 3x2 + 2x3 = 2

Solution: Factor A as a product LLT as follows: 2 −1 2
−1 3 3
2 3 2

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33

 .
From the first column we obtain

2 = l211 =⇒ l11 =
√

2,

−1 = l21l11 + l22(0) =⇒ −1 = l21
√

2 =⇒ l21 =
−1√

2
,
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2 = l31l11 + l32(0) + l33(0) =⇒ 2 = l31
√

2 =⇒ l31 =
1√
2
.

Now, from the second column we have

3 = l221 + l222 =⇒ 3 =
1

2
+ l222 =⇒ l22 =

√
5

2
,

3 = l31l21 + l32l22 + l33(0) =⇒ 3 =
−1

2
+ l32

√
5

2
=⇒ l32 =

7√
10
.

Finally, from the third column we get

2 = l231 + l232 + l233 =⇒ 2 =
1

2
+

49

10
+ l233 =⇒ l33 =

√
17

5
.

0.5 Iterative Methods

Direct methods are more efficient in solving linear systems of small dimen-
sions in less computational cost than iterative methods. For large linear
systems in particular for sparse linear systems iterative methods are more
efficient for solving linear systems in terms of computational cost and effort
compared to direct methods. In this section we will study the most common
and basic iterative methods for solving linear algebraic systems which are
Jacobi method and Gauss-Siedel method.

0.5.1 Jacobi Method

The general form of Jacobi iterative method for solving the ith equation
in the linear system AX = B for unknown xi, i = 1, , · · · , n is:

xki =
n∑

j=1

(
−
aijx

k−1
j

aii

)
+
bi
aii
, j 6= i, aii 6= 0, for i = 1, · · · , n, k = 1, · · · , n.

It is also known as Jacobi iterative process or Jacobi iterative tech-
nique
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Example 16. Solve the following linear system using Jacobi iterative method

2x1 + x2 + x3 = 0

x1 + 3x2 + x3 = 0.5

x1 + x2 + 2.5x3 = 0

Solution: These equations can be written in the form

x1 =
−x2 − x3

2
,

x2 =
0.5− x1 − x3

3
,

x3 =
−x1 − x2

2.5
.

Writing these equations in iterative form

xk+1
1 =

−xk2 − xk3
2

,

xk+1
2 =

0.5− xk1 − xk3
3

,

xk+1
3 =

−xk1 − xk2
2.5

.

Let us start with initial guess P0 = (x01, x
0
2, x

0
3) = (0, 0.1,−0.1). Substi-

tuting these values in the right-hand side of each equation in above to find
the new iterations

x11 =
−x02 − x03

2
=
−0.1− (−0.1)

2
=
−0.1 + 0.1

2
= 0,

x12 =
0.5− x01 − x03

3
=

0.5− 0− (−0.1)

3
= 0.2,

x13 =
−x01 − x02

2.5
=
−0− 0.1

2.5
= −0.04.
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Now, the new point P1 = (x11, x
1
2, x

1
3) = (0, 0.2,−0.04) is used in the

Jacobi iterative form to find the next approximation P2

x21 =
−x12 − x13

2
=
−0.2 + 0.04

2
=
−0.16

2
= −0.08,

x22 =
0.5− x11 − x13

3
=

0.5 + 0.04

3
=

0.54

3
= 0.18,

x23 =
−x11 − x12

2.5
=
−0− 0.2

2.5
=
−0.2

2.5
= −0.08.

The new point P2 = (x21, x
2
2, x

2
3) = (−0.08, 0.18,−0.08) is closer to the

solution than P0 and P1 and is used to find P3

x31 =
−x22 − x23

2
=
−0.18 + 0.08

2
=
−0.1

2
= −0.05,

x32 =
0.5− x21 − x23

3
=

0.5 + 0.08 + 0.08

3
=

0.66

3
= 0.22,

x33 =
−x21 − x22

2.5
=

0.08− 0.18

2.5
=
−0.1

2.5
= −0.04.

This Jacobi iteration process generates a sequence of points {Pn} =
{(xn1 , xn2 , xn3 )} that converges to the solution (x1, x2, x3) = (−3/38, 4/19,−1/19) =
(−0.078947368421053, 0.210526315789474,−0.052631578947368). The out-
line of the results is given in the Table 1.
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n xn1 xn2 xn3
0 0.000000000000000 0.100000000000000 −0.100000000000000
1 0.000000000000000 0.200000000000000 −0.040000000000000
2 −0.080000000000000 0.180000000000000 −0.080000000000000
3 −0.050000000000000 0.220000000000000 −0.040000000000000
4 −0.090000000000000 0.196666666666667 −0.068000000000000
5 −0.064333333333333 0.219333333333333 −0.042666666666667
6 −0.088333333333333 0.202333333333333 −0.062000000000000
7 −0.070166666666667 0.216777777777778 −0.045600000000000
8 −0.085588888888889 0.205255555555556 −0.058644444444444
9 −0.073305555555556 0.214744444444444 −0.047866666666667
10 −0.083438888888889 0.207057407407407 −0.056575555555556
11 −0.075240925925926 0.213338148148148 −0.049447407407407
12 −0.081945370370370 0.208229444444444 −0.055238888888889
13 −0.076495277777778 0.212394753086420 −0.050513629629630
14 −0.080940561728395 0.209002969135802 −0.054359790123457
15 −0.077321589506173 0.211766783950617 −0.051224962962963
16 −0.080270910493827 0.209515517489712 −0.053778077777778
17 −0.077868719855967 0.211349662757202 −0.051697842798354
18 −0.079825909979424 0.209855520884774 −0.053392377160494
19 −0.078231571862140 0.211072762379973 −0.052011844362140
20 −0.079530459008916 0.210081138741427 −0.053136476207133

Table 1: Jacobi Iterative Solution of Example 16

0.5.2 Gauss-Siedel Method

An improvement of Jacobi method can be made by using the recent values
xki , i, k = 1, · · · , n, in the calculations once their values are obtained. This
improvement is called Gauss-Siedel iterative method and its general form
for solving the ith equation in the linear system AX = B for unknown
xi, i = 1, , · · · , n is:

xki =
i−1∑
j=1

(
−
aijx

k
j

aii

)
+

n∑
j=i+1

(
−
aijx

k−1
j

aii

)
+
bi
aii
, j 6= i, aii 6= 0,

for i = 1, · · · , n, and k = 1, · · · , n.

It is also known as Gauss-Siedel iterative process or Gauss-Siedel
iterative technique
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Example 17. Solve the following linear system using Gauss-Siedel iterative
method

2x1 − 4x2 + x3 = −1

x1 + x2 + 6x3 = 1

3x1 + 3x2 + 5x3 = 4

.

Solution: Rearrange the system in above such that the coefficient matrix is
strictly diagonally dominant

3x1 + 3x2 + 5x3 = 4

2x1 − 4x2 + x3 = −1

x1 + x2 + 6x3 = 1

.
These equations can be written in the form

x1 =
4− 3x2 − 5x3

3
,

x2 =
−1− 2x1 − x3

−4
=

1 + 2x1 + x3
4

,

x3 =
1− x1 − x2

6
.

This suggests the following Gauss-Siedel iterative process

xn+1
1 =

4− 3xn2 − 5xn3
3

,

xn+1
2 =

1 + 2xn+1
1 + xn3
4

,

xn+1
3 =

1− xn+1
1 − xn+1

2

6
.

We start with initial guess P0 = (x01, x
0
2, x

0
3) = (1, 0.1,−1). Substitute

x02 = 0.1 and x03 = −1 in the first equation and have
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x11 =
4− 3x02 − 5x03

3
=

4− 3(0.1)− 5(−1)

3
=

8.7

3
= 2.9.

Then, substitute the new value x11 = 2.9 and x03 = −1 into the second
equation to obtain

x12 =
1 + 2x11 + x03

4
=

1 + 2(2.9) + (−1)

4
= 1.45.

Finally, substitute the new values x11 = 2.9 and x12 = 1.45 in the third
equation and get

x13 =
1− x11 − x12

6
=

1− 2.9− 1.45

6
=
−3.35

6
= −0.558333333333333.

Now, we have the now point P1 = (x11, x
1
2, x

1
3) = (2.9, 1.45,−0.558333333333333)

is used to find the next approximation P2.

Substitute x12 = 1.45 and x13 = −0.558333333333333 in the first equation
and get

x21 =
4− 3x12 − 5x13

3
=

4− 3(1.45)− 5(−0.558333333333333)

3

=
2.441666666666666

3
= 0.813888888888889.

Then, substitute the new value x12 = 0.813888888888889 and x13 = −0.558333333333333
into the second equation to obtain

x22 =
1 + 2x21 + x13

4
=

1 + 2(0.813888888888889) + (−0.558333333333333)

4

=
2.069444444444445

4
= 0.517361111111111.

Finally, substitute the new values x12 = 0.813888888888889 and x22 =
0.517361111111111 in the third equation and get

x23 =
1− x21 − x22

6
=

1− 0.813888888888889− 0.517361111111111

6

=
−0.331250000000000

6
= −0.055208333333333.
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This iteration process generates a sequence of points {Pn}= {(xn1 , xn2 , xn3 )}
that converges to the solution (x1, x2, x3) = (32/39, 25/39,−1/13) =
(0.820512820512820, 0.641025641025641,−0.076923076923077). The results
are given in the Table 2.

n xn1 xn2 xn3
0 1.000000000000000 0.100000000000000 −1.000000000000000
1 2.900000000000000 1.450000000000000 −0.558333333333333
2 0.813888888888889 0.517361111111111 −0.055208333333333
3 0.907986111111111 0.690190972222222 −0.099696180555556
4 0.809302662037037 0.629727285879630 −0.073171657986111
5 0.825558810763889 0.644486490885417 −0.078340883608218
6 0.819414981794946 0.640122269995419 −0.076589541965061
7 0.820860299946349 0.641282764481909 −0.077023844071376
8 0.820423642303718 0.640955860134015 −0.076896583739622
9 0.820538446098689 0.641045077114439 −0.076930587202188
10 0.820505901555874 0.641020303977390 −0.076921034255544
11 0.820514753115183 0.641027117993706 −0.076923645184815
12 0.820512290647653 0.641025234027623 −0.076922920779213
13 0.820512967271065 0.641025753440729 −0.076923120118632
14 0.820512780090325 0.641025610015504 −0.076923065017638
15 0.820512831680559 0.641025649585870 −0.076923080211072
16 0.820512817432583 0.641025638663523 −0.076923076016018
17 0.820512821363173 0.641025641677582 −0.076923077173459
18 0.820512820278183 0.641025640845727 −0.076923076853985
19 0.820512820577581 0.641025641075294 −0.076923076942146
20 0.820512820494949 0.641025641011938 −0.076923076917814

Table 2: Gauss-Siedel Iterative Solution of Example 17
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Exercises

Exercise 2. Solve Example 9 Using Gauss elimination with forward substi-
tution method. Compare the solution with solution of the same example.

Exercise 3. Solve Example 10 Using Gauss elimination with backward sub-
stitution method. Compare the solution with solution of the same example.

Exercise 4. Repeat Example 16 with Gauss-Siedel iteration. Compute five
iterations and compare them with Jacobi iterations in the same example.

Exercise 5. Redo Example 17 with Jacobi iteration. Compute five iterations
and compare them with Gauss-Siedel iterations in the same example.

Exercise 6. Use Gauss elimination with backward substitution method and
three-digit rounding arithmetic to solve the following linear system

x1 + 3x2 + 2x3 = 5

x1 + 2x2 − 3x3 = −2

x1 + 5x2 + 3x3 = 10

.

Exercise 7. (a) Determine the LU factorisation for matrix A in the linear
system AX = B, where

A =

 −1 1 −2
2 −1 1
−4 1 −2

 and B =

 2
1
4

 .
(b) Then use the factorisation to solve the system

−x1 + x2 − 2x3 = 2

2x1 − x2 + x3 = 1

−4x1 + x2 − 2x3 = 4

.

Exercise 8. Solve the following linear system using Gauss-Jordan elimina-
tion method

−4x1 − x2 − 2x3 = −9

−x1 − x2 + 3x3 = 9

−2x1 − 4x2 + x3 = 5

.
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